Skip to content

hoang2306/SGL-Torch

 
 

Repository files navigation

SGL-Torch

This is the PyTorch implementation for our SIGIR 2021 paper. We also provide Tensorflow implementation for SGL: https://github.com/wujcan/SGL-TensorFlow.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing Xie. 2021. Self-supervised Graph Learning for Recommendation, Paper in arXiv.

This project is based on NeuRec. Thanks to the contributors.

Environment Requirement

The code runs well under python 3.7.7. The required packages are as follows:

  • pytorch == 1.9.1
  • numpy == 1.20.3
  • scipy == 1.7.1
  • pandas == 1.3.4
  • cython == 0.29.24

Quick Start

Firstly, compline the evaluator of cpp implementation with the following command line:

python local_compile_setup.py build_ext --inplace

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

Note that the cpp implementation is much faster than python.

Secondly, change the value of variable root_dir and data_dir in main.py, then specify dataset and recommender in configuration file NeuRec.ini.

Model specific hyperparameters are in configuration file ./conf/SGL.ini.

Some important hyperparameters (taking a 3-layer SGL-ED as example):

yelp2018 dataset

aug_type=ED
reg=1e-4
embed_size=64
n_layers=3
ssl_reg=0.1
ssl_ratio=0.1
ssl_temp=0.2

amazon-book dataset

aug_type=ED
reg=1e-4
embed_size=64
n_layers=3
ssl_reg=0.5
ssl_ratio=0.1
ssl_temp=0.2

ifashion dataset

aug_type=ED
reg=1e-3
embed_size=64
n_layers=3
ssl_reg=0.02
ssl_ratio=0.4
ssl_temp=0.5

Finally, run main.py in IDE or with command line:

yelp2018 dataset

python main.py --recommender=SGL --dataset=yelp2018 --aug_type=ED --reg=1e-4 --n_layers=3 --ssl_reg=0.1 --ssl_ratio=0.1 --ssl_temp=0.2

amazon-book dataset

python main.py --recommender=SGL --dataset=amazon-book --aug_type=ED --reg=1e-4 --n_layers=3 --ssl_reg=0.5 --ssl_ratio=0.1 --ssl_temp=0.2

ifashion dataset

python main.py --recommender=SGL --dataset=ifashion --aug_type=ED --reg=1e-3 --n_layers=3 --ssl_reg=0.02 --ssl_ratio=0.4 --ssl_temp=0.5

About

SGL PyTorch version

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 80.6%
  • C++ 9.9%
  • Cython 9.5%