Skip to content

Commit

Permalink
Tweak demo 13
Browse files Browse the repository at this point in the history
  • Loading branch information
acp29 committed Jun 4, 2024
1 parent f60410b commit eedb9ee
Showing 1 changed file with 2 additions and 13 deletions.
15 changes: 2 additions & 13 deletions inst/bootlm.m
Original file line number Diff line number Diff line change
Expand Up @@ -2773,8 +2773,7 @@
%! % a big effect on standard errors, confidence intervals and p-values for the
%! % parameters. One way to estimate p-values and the precision of parameter
%! % estimates for fixed effects in nested designs is to fit a mixed linear
%! % model. Another way, as we do so here, is to fit a linear model but
%! % calculate standard errors, confidence intervals and p-values using
%! % model. Another way, as we do so here, is to fit a linear model using
%! % bootstrap with clustered resampling.
%!
%! % Nested model example from:
Expand All @@ -2798,17 +2797,7 @@
%! fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s\n', ...
%! AOVSTAT.DF(1), AOVSTAT.DFE, AOVSTAT.F(1), ...
%! AOVSTAT.PVAL(1), AOVSTAT.MODEL{1});
%!
%! % Note that with only two clusters per factor wild bootstrap will give very
%! % unstable confidence intervals, but we can instead use Bayesian bootstrap
%! % with the 'auto' prior to get credible intervals for the group comparisons.
%! STATS = bootlm (data, {group}, 'clustid', clustid, 'display', 'on', ...
%! 'dim', 1, 'posthoc', 'pairwise', ...
%! 'method', 'bayesian', 'prior', 'auto');
%!
%! % And similarly for the estimated marginal means.
%! STATS = bootlm (data, {group}, 'clustid', clustid, 'display', 'on', ...
%! 'dim', 1, 'method', 'bayesian', 'prior', 'auto');


%!demo
%!
Expand Down

0 comments on commit eedb9ee

Please sign in to comment.