Skip to content
This repository has been archived by the owner on Mar 12, 2024. It is now read-only.

Gradio web app #359

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@ We replace the full complex hand-crafted object detection pipeline with a Transf

![DETR](.github/DETR.png)

**New**
* [Gradio App](https://gradio.app/g/AK391/detr)

**What it is**. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture.
Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.

Expand Down
111 changes: 111 additions & 0 deletions demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch
from torch import nn
from torchvision.models import resnet50
import torchvision.transforms as T
torch.set_grad_enabled(False);
import gradio as gr
import io

model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True)


# COCO classes
CLASSES = [
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush'
]

# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

# standard PyTorch mean-std input image normalization
transform = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)

def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b

def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
return Image.open(buf)


def plot_results(pil_img, prob, boxes):
plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
cl = p.argmax()
text = f'{CLASSES[cl]}: {p[cl]:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
return fig2img(plt)



def detr(im):
# mean-std normalize the input image (batch-size: 1)
img = transform(im).unsqueeze(0)

# propagate through the model
outputs = model(img)

# keep only predictions with 0.7+ confidence
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > 0.9

# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)
return plot_results(im, probas[keep], bboxes_scaled)



inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil",label="Output Image")

examples = [
['horses.jpg'],
['pandas.jpg']
]

title = "DETR"
description = "demo for Facebook DETR. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.12872'>End-to-End Object Detection with Transformers</a> | <a href='https://github.com/facebookresearch/detr'>Github Repo</a></p>"

gr.Interface(detr, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
Binary file added horses.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added pandas.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
6 changes: 4 additions & 2 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
cython
git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI&egg=pycocotools
submitit
torch>=1.5.0
torchvision>=0.6.0
git+https://github.com/cocodataset/panopticapi.git#egg=panopticapi
scipy
onnx
onnxruntime
Pillow
matplotlib
gradio
numpy