Library to programmatically build labeled datasets for Named-Entity Recognition (NER) and Relation Extraction (RE) Machine Learning tasks.
pip install extr-ds
see Instructions on how to use the command line utility to manage your project.
extr-ds --init
extr-ds --split
extr-ds --annotate -ents
extr-ds --annotate -rels
extr-ds --relate -label NO_RELATION=5,7,9
extr-ds --relate -delete 5,6,7
extr-ds --relate -recover 5,6,7
extr-ds --save -ents
extr-ds --save -rels
extr-ds --reset
extr-ds --help
text = 'Ted Johnson is a pitcher.'
from extr import RegEx, RegExLabel
from extr.entities import EntityExtactor
from extr_ds.labelers import IOB
entity_extractor = EntityExtactor([
RegExLabel('PERSON', [
RegEx([r'(ted\s+johnson|ted)'], re.IGNORECASE)
]),
RegExLabel('POSITION', [
RegEx([r'pitcher'], re.IGNORECASE)
]),
])
sentence_tokenizer = ## 3rd party tokenizer ##
label = IOB(sentence_tokenizer, entity_extractor).label(text)
## label == <Label tokens=..., labels=['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O']>
from extr.entities import EntityExtractor
from extr.relations import RegExRelationLabelBuilder, \
RelationExtractor
from extr_ds.labelers import RelationClassification
from extr_ds.labelers.relation import RelationBuilder, BaseRelationLabeler, RuleBasedRelationLabeler
person_to_position_relationship = RegExRelationLabelBuilder('is_a') \
.add_e1_to_e2(
'PERSON',
[
r'\s+is\s+a\s+',
],
'POSITION'
) \
.build()
base_relation_labeler = BaseRelationLabeler(
RelationBuilder(relation_formats=[
('PERSON', 'POSITION', 'NO_RELATION')
])
)
rule_based_relation_labeler = RuleBasedRelationLabeler(
RelationExtractor([person_to_position_relationship])
)
labeler = RelationClassification(
EntityExtractor([
RegExLabel('PERSON', [
RegEx([r'(ted johnson|bob)'], re.IGNORECASE)
]),
RegExLabel('POSITION', [
RegEx([r'pitcher'], re.IGNORECASE)
]),
]),
base_relation_labeler,
relation_labelers=[
rule_based_relation_labeler
]
)
results = labeler.label(text)
## results.relation_labels == [
## <RelationLabel sentence="<e1>Ted Johnson</e1> is a <e2>pitcher</e2>." label="is_a">
## ]
from extr_ds.validators import check_for_differences
differences_in_labels = check_for_differences(
['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O'],
['B-PERSON', 'O', 'O', 'O', 'B-POSITION', 'O']
)
## differences_in_labels.has_diffs == True
## differences_in_labels.diffs_between_labels == [
## <Difference index=1, diff_type=DifferenceTypes.S2_MISSING>
## ]
differences_in_labels = check_for_differences(
['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O'],
['B-PERSON', 'B-PERSON', 'O', 'O', 'B-POSITION', 'O']
)
## differences_in_labels.has_diffs == True
## differences_in_labels.diffs_between_labels == [
## <Difference index=1, diff_type=DifferenceTypes.MISMATCH>
## ]