Skip to content

dawdleryang/object_detection

Repository files navigation

object_detection

This repository is forked and modified from tensorflow object detection model.

To run baseline code for the hackathon, you may follow the instruction below:

  1. fork / mirror this repository

    !!!important: make it as your own private repository and assign right to YITU admin (refer to section 5 in "Hackathon_Baseline_User_Guider"!!!

  2. environment setttings

    # activate AWS virtual environment
    cd ~
    source activate tensorflow_p36
    # Setup PYTHONPATH
    cd hackathon-sg/ 
    export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim    
  3. to generate tfrecord data

    cd object_detection
    python script/generate_tfrecord_from_csv.py --image_dir ../input/training/images/ --output_path ../input/hackathon --csv_file ../input/training/train_label.csv --validation_set_size 500
  4. to train the model

    python script/train.py --logtostderr --train_dir=training/baseline/ --pipeline_config_path=training/hackathon_baseline.config

    #to visualize the training results, can only use 8000 for port no. tensorboard --logdir=training/baseline --port 8000

  5. to eval the trained model

    python script/eval.py --logtostderr --pipeline_config_path=training/hackathon_baseline.config --checkpoint_dir=training/baseline --eval_dir=eval/baseline

    #To visualize the eval results, can only use 8000 for port no. tensorboard --logdir=eval/baseline --port 8000

  6. to export the trained model

    python script/export_inference_graph.py --input_type image_tensor --pipeline_config_path training/hackathon_baseline.config   --trained_checkpoint_prefix training/baseline/model.ckpt-20000 --output_directory output/
  7. to output the results to .csv

    python script/output_csv_results.py threshold=0.5 data_dir=../input/testing/images/ model_path=output/frozen_inference_graph.pb output_path=output/submission.csv label_map=../input/label_map.pbtxt
  8. to submit the results

    please follow the instruction from ”Hackathon Infra User Manual“ to submit your detection results.

    git push your modified codes to your private repository whenever you make a submission.

    !!!DO PUSH YOUR CODES FOR EVERY SUBMISSION YOU MADE FOR CODE VERIFICATION PURPOSE!!!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages