Skip to content

Commit

Permalink
Python: Support OpenAI json_schema response format (microsoft#8958)
Browse files Browse the repository at this point in the history
### Motivation and Context

OpenAI has released in their August 6th model the ability to specific a
json_schema response format. This allows the model to use the specified
Pydantic model or the provided JSON schema representing a "strict"
model/class to make sure that it responds with the exact schema that was
provided.

Note that the strict tool calling will be handled via a separate
ADR/work item once agreed upon by all three SK languages.

<!-- Thank you for your contribution to the semantic-kernel repo!
Please help reviewers and future users, providing the following
information:
  1. Why is this change required?
  2. What problem does it solve?
  3. What scenario does it contribute to?
  4. If it fixes an open issue, please link to the issue here.
-->

### Description

This PR introduces the ability to specific either a Pydantic model or a
non-Pydantic model for the json_schema response format
OpenAIChatPromptExecutionSettings.
- There are two new code sample concept files showing how to do this
with both a Pydantic and a non-Pydantic model. The other code sample
shows how to configure a json_schema response format while using
function calling.
- If the model is unable to respond based on the provided schema, it
will contain a `refusal` attribute as part of the chat completion
message contents. This will be included in the response as a TextContent
item explaining why it couldn't fulfill the request.
- Unit tests added for this new functionality.
- Handles microsoft#7946 

<!-- Describe your changes, the overall approach, the underlying design.
These notes will help understanding how your code works. Thanks! -->

### Contribution Checklist

<!-- Before submitting this PR, please make sure: -->

- [X] The code builds clean without any errors or warnings
- [X] The PR follows the [SK Contribution
Guidelines](https://github.com/microsoft/semantic-kernel/blob/main/CONTRIBUTING.md)
and the [pre-submission formatting
script](https://github.com/microsoft/semantic-kernel/blob/main/CONTRIBUTING.md#development-scripts)
raises no violations
- [X] All unit tests pass, and I have added new tests where possible
- [X] I didn't break anyone 😄
  • Loading branch information
moonbox3 authored Sep 25, 2024
1 parent 04ca656 commit 3d0a890
Show file tree
Hide file tree
Showing 19 changed files with 694 additions and 32 deletions.
1 change: 0 additions & 1 deletion python/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@ dependencies = [
# OpenTelemetry
"opentelemetry-api ~= 1.24",
"opentelemetry-sdk ~= 1.24",

"prance ~= 23.6.21.0",

# templating
Expand Down
1 change: 1 addition & 0 deletions python/samples/concepts/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ This section contains code snippets that demonstrate the usage of Semantic Kerne
| Search | Using search services information |
| Service Selector | Shows how to create and use a custom service selector class. |
| Setup | How to setup environment variables for Semantic Kernel |
| Structured Output | How to leverage OpenAI's json_schema structured output functionality. |
| TextGeneration | Using [`TextGeneration`](https://github.com/microsoft/semantic-kernel/blob/main/python/semantic_kernel/connectors/ai/text_completion_client_base.py) capable service with models |

# Configuring the Kernel
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,8 @@ async def main():
)

plugin_path = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
)
kernel.add_plugin(parent_directory=plugin_path, plugin_name="email_plugin")

Expand Down
16 changes: 16 additions & 0 deletions python/samples/concepts/structured_output/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# OpenAI Structured Outputs

## Supported Models

### Azure OpenAI:

- Access to `gpt-4o-2024-08-06` or later
- The `2024-08-01-preview` API version
- If using a token instead of an API key, you must have the `Cognitive Services OpenAI Contributor` role assigned to your Azure AD user.
- See more information [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/structured-outputs?tabs=python-secure)

### OpenAI:

- The OpenAI models supported are:
- `gpt-4o-mini-2024-07-18` and later
- `gpt-4o-2024-08-06` and later
135 changes: 135 additions & 0 deletions python/samples/concepts/structured_output/json_structured_output.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
# Copyright (c) Microsoft. All rights reserved.

import asyncio

from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai.services.azure_chat_completion import AzureChatCompletion
from semantic_kernel.connectors.ai.open_ai.services.open_ai_chat_completion import OpenAIChatCompletion
from semantic_kernel.contents import ChatHistory
from semantic_kernel.contents.streaming_chat_message_content import StreamingChatMessageContent

###################################################################
# The following sample demonstrates how to create a chat #
# completion call that assists users in solving math problems. #
# The bot guides the user step-by-step through the solution #
# process using a structured output format based on either a #
# Pydantic model or a non-Pydantic model. #
###################################################################


###################################################################
# NOTE: If using Azure OpenAI the the following is required:
# - access to gpt-4o-2024-08-06
# - the 2024-08-01-preview API version
# - if using a token instead of an API KEY, you must have the
# `Cognitive Services OpenAI Contributor` role assigned to your
# Azure AD user.
# - flip the `use_azure_openai` flag to `True`
###################################################################
use_azure_openai = False

system_message = """
You are a helpful math tutor. Guide the user through the solution step by step.
"""


###################################################################
# OPTION 1: Define the Pydantic model that represents the
# structured output from the OpenAI service. This model will be
# used to parse the structured output from the OpenAI service,
# and ensure that the model correctly outputs the schema based
# on the Pydantic model.
from semantic_kernel.kernel_pydantic import KernelBaseModel # noqa: E402


class Step(KernelBaseModel):
explanation: str
output: str


class Reasoning(KernelBaseModel):
steps: list[Step]
final_answer: str


###################################################################


# OPTION 2: Define a non-Pydantic model that should represent the
# structured output from the OpenAI service. This model will be
# converted to the proper JSON Schema and sent to the LLM.
# Uncomment the follow lines and comment out the Pydantic model
# above to use this option.
# class Step:
# explanation: str
# output: str


# class Reasoning:
# steps: list[Step]
# final_answer: str


###################################################################

kernel = Kernel()

service_id = "structured-output"
if use_azure_openai:
chat_service = AzureChatCompletion(
service_id=service_id,
)
else:
chat_service = OpenAIChatCompletion(
service_id=service_id,
)
kernel.add_service(chat_service)

req_settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
req_settings.max_tokens = 2000
req_settings.temperature = 0.7
req_settings.top_p = 0.8
req_settings.function_choice_behavior = FunctionChoiceBehavior.Auto(filters={"excluded_plugins": ["chat"]})

# NOTE: This is the key setting in this example that tells the OpenAI service
# to return structured output based on the Pydantic model Reasoning.
req_settings.response_format = Reasoning


chat_function = kernel.add_function(
prompt=system_message + """{{$chat_history}}""",
function_name="chat",
plugin_name="chat",
prompt_execution_settings=req_settings,
)

history = ChatHistory()
history.add_user_message("how can I solve 8x + 7y = -23, and 4x=12?")


async def main():
stream = True
if stream:
answer = kernel.invoke_stream(
chat_function,
chat_history=history,
)
print("Mosscap:> ", end="")
result_content: list[StreamingChatMessageContent] = []
async for message in answer:
result_content.append(message[0])
print(str(message[0]), end="", flush=True)
if result_content:
result = "".join([str(content) for content in result_content])
else:
result = await kernel.invoke(
chat_function,
chat_history=history,
)
print(f"Mosscap:> {result}")
history.add_assistant_message(str(result))


if __name__ == "__main__":
asyncio.run(main())
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
# Copyright (c) Microsoft. All rights reserved.

import asyncio
from typing import Annotated

from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai.services.azure_chat_completion import AzureChatCompletion
from semantic_kernel.connectors.ai.open_ai.services.open_ai_chat_completion import OpenAIChatCompletion
from semantic_kernel.contents import ChatHistory
from semantic_kernel.contents.streaming_chat_message_content import StreamingChatMessageContent
from semantic_kernel.functions.kernel_function_decorator import kernel_function

###################################################################
# The following sample demonstrates how to create a chat #
# completion call that assists users in solving a question #
# using a Semantic Kernel Plugin and function calling problems. #
# The chat plugin guides the user step-by-step through the #
# solution process using a structured output format based on #
# either a Pydantic model or a non-Pydantic model #
###################################################################


###################################################################
# NOTE: If using Azure OpenAI the the following is required:
# - access to gpt-4o-2024-08-06
# - the 2024-08-01-preview API version
# - if using a token instead of an API KEY, you must have the
# `Cognitive Services OpenAI Contributor` role assigned to your
# Azure AD user.
# - flip the `use_azure_openai` flag to `True`
###################################################################
use_azure_openai = True

system_message = """
You are a helpful math tutor. Guide the user through the solution step by step.
"""


# Define a sample plugin to use for function calling
class WeatherPlugin:
"""A sample plugin that provides weather information for cities."""

@kernel_function(name="get_weather_for_city", description="Get the weather for a city")
def get_weather_for_city(self, city: Annotated[str, "The input city"]) -> Annotated[str, "The output is a string"]:
if city == "Boston":
return "61 and rainy"
if city == "London":
return "55 and cloudy"
if city == "Miami":
return "80 and sunny"
if city == "Paris":
return "60 and rainy"
if city == "Tokyo":
return "50 and sunny"
if city == "Sydney":
return "75 and sunny"
if city == "Tel Aviv":
return "80 and sunny"
return "31 and snowing"


###################################################################
# OPTION 1: Define the Pydantic model that represents the
# structured output from the OpenAI service. This model will be
# used to parse the structured output from the OpenAI service,
# and ensure that the model correctly outputs the schema based
# on the Pydantic model.
from semantic_kernel.kernel_pydantic import KernelBaseModel # noqa: E402


class Step(KernelBaseModel):
explanation: str
output: str


class Reasoning(KernelBaseModel):
steps: list[Step]
final_answer: str


###################################################################


# OPTION 2: Define a non-Pydantic model that should represent the
# structured output from the OpenAI service. This model will be
# converted to the proper JSON Schema and sent to the LLM.
# Uncomment the follow lines and comment out the Pydantic model
# above to use this option.
# class Step:
# explanation: str
# output: str


# class Reasoning:
# steps: list[Step]
# final_answer: str


###################################################################

kernel = Kernel()

service_id = "structured-output"
if use_azure_openai:
chat_service = AzureChatCompletion(
service_id=service_id,
)
else:
chat_service = OpenAIChatCompletion(
service_id=service_id,
)
kernel.add_service(chat_service)

kernel.add_plugin(WeatherPlugin(), plugin_name="weather")

req_settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
req_settings.max_tokens = 2000
req_settings.temperature = 0.7
req_settings.top_p = 0.8
req_settings.function_choice_behavior = FunctionChoiceBehavior.Auto(filters={"excluded_plugins": ["chat"]})

# NOTE: This is the key setting in this example that tells the OpenAI service
# to return structured output based on the Pydantic model Reasoning.
req_settings.response_format = Reasoning


chat_function = kernel.add_function(
prompt=system_message + """{{$chat_history}}""",
function_name="chat",
plugin_name="chat",
prompt_execution_settings=req_settings,
)

history = ChatHistory()
history.add_user_message("Using the available plugin, what is the weather in Paris?")


async def main():
stream = True
if stream:
answer = kernel.invoke_stream(
chat_function,
chat_history=history,
)
print("Mosscap:> ", end="")
result_content: list[StreamingChatMessageContent] = []
async for message in answer:
result_content.append(message[0])
print(str(message[0]), end="", flush=True)
if result_content:
result = "".join([str(content) for content in result_content])
else:
result = await kernel.invoke(
chat_function,
chat_history=history,
)
print(f"Mosscap:> {result}")
history.add_assistant_message(str(result))


if __name__ == "__main__":
asyncio.run(main())
Loading

0 comments on commit 3d0a890

Please sign in to comment.