-
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add proofs relating to set operations and images
- Loading branch information
1 parent
2dc03b6
commit ec20f2a
Showing
13 changed files
with
1,073 additions
and
577 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
<!DOCTYPE html> | ||
<html> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta http-equiv="X-UA-Compatible" content="IE=edge"> | ||
<title>Complex Numbers</title> | ||
<meta name="description" content=""> | ||
<meta name="viewport" content="width=device-width, initial-scale=1"> | ||
<link rel="stylesheet" href="/styles/styles.css"> | ||
|
||
<script src="/js/script.js" defer></script> | ||
|
||
</head> | ||
|
||
<body> | ||
<div class="thin-wrapper"> | ||
|
||
<div class="definition" id="definition-addition"> | ||
<div class="title">Addition</div> | ||
<div class="content"> | ||
Given \( a + b i , c + d i \in \mathbb{C} \), we define | ||
\[ | ||
\left ( a + b i \right ) + \left ( c + d i \right ) = \left ( a + c \right ) + \left ( b + d \right ) i \ | ||
\] | ||
</div> | ||
</div> | ||
|
||
<div class="definition" id="definition-multiplication"> | ||
<div class="title">Multiplication</div> | ||
<div class="content"> | ||
given \( a + b i , c + d i \in \mathbb{C} \), then: | ||
\[ \left ( a + b i \right ) \cdot \left ( c + d i \right ) = a b + i \left ( a d + b c \right ) - d b = \left ( a d - b d \right ) + i \left ( a d + b c \right ) \] | ||
</div> | ||
</div> | ||
|
||
<div class="definition" id="definition-equality"> | ||
<div class="title">Equality</div> | ||
<div class="content"> | ||
Given \( a + b i , c + d i \in \mathbb{C} \), they are equal when \( a = c \) and \( b = d \) | ||
</div> | ||
</div> | ||
|
||
<div class="definition" id="definition-complex-conjugate"> | ||
<div class="title">Conjugate</div> | ||
<div class="content"> | ||
suppose \( z = x + i y \), then the conjugate is defined and denoted by | ||
\[ | ||
\overline{z} := x - i y | ||
\] | ||
</div> | ||
</div> | ||
|
||
<div class="proposition" id="proposition-conjugate-cancels"> | ||
<div class="title">conjugate Cancels</div> | ||
<div class="content"> | ||
\( \overline{\overline{z}} = z \) | ||
</div> | ||
<div class="proof"> | ||
Let \( z = x + i y \), then \( \overline{z} = x - i y = x + i \left ( - y \right ) \) then \( \overline{\overline{z}} = x - i \left ( - y \right ) = x + i y = z \) as needed. | ||
</div> | ||
</div> | ||
|
||
<div class="definition" id="definition-modulus"> | ||
<div class="title">Modulus</div> | ||
<div class="content"> | ||
for any \( z = x + i y \in \mathbb{C} \), we define | ||
\[ \left | z \right | := \sqrt{x^{2} + y^{2}} \] | ||
</div> | ||
</div> | ||
|
||
<div class="corollary" id="corollary-modulus-ignores-conjugates"> | ||
<div class="title">Modulus Ignores Conjugates</div> | ||
<div class="content"> | ||
\[ \left | \overline{z} \right | = \left | z \right | \] | ||
</div> | ||
<div class="proof"> | ||
Suppose that \( z = x + i y \), then \( \left | \overline{z} \right | = \left | x - i y \right | = \sqrt{x^{2} + \left ( - y \right )^{2}} = \sqrt{x^{2} + y^{2}} = \left | z \right | \) | ||
</div> | ||
</div> | ||
|
||
|
||
|
||
|
||
<div class="proposition" id="proposition-complex-number-times-its-conjugate-equals-the-modulus-squared"> | ||
<div class="title">complex number times it's conjugate equals the modulus squared</div> | ||
<div class="content"> | ||
<div class="centered-content"> | ||
\( z \cdot \overline{z} = \left \lvert z \right \rvert^{2} \) | ||
</div> | ||
</div> | ||
<div class="proof"> | ||
suppose that \( z = x + i y \), then \( z \cdot \overline{z} = \left ( x + i y \right ) \cdot \left ( x - i y \right ) = x^{2} + y^{2} + x y i - x y i = x^{2} + y^{2} \), but then again \( \left | z \right | = \left | x + i y \right | = \sqrt{x^{2} + y^{2}} \) thus \( z \cdot \overline{z} = \left | z \right | ^{2} \) | ||
</div> | ||
</div> | ||
|
||
|
||
|
||
<div class="definition" id="definition-inverse"> | ||
<div class="title">inverse</div> | ||
<div class="content"> | ||
the inverse of a complex number \( z \in \mathbb{C} \) is another \( w \in \mathbb{C} \) such that \( z \cdot w = 1 \), we denote \( w \) by \( z^{- 1} \) or \( \frac{1}{z} \) | ||
</div> | ||
</div> | ||
|
||
<div class="theorem" id="theorem-value-of-the-inverse"> | ||
<div class="title">value of the inverse</div> | ||
<div class="content"> | ||
Given \( z \in \mathbb{C} \) we have \( z^{- 1} = \frac{\overline{z}}{\left \lvert z \right \rvert^{2}} \) | ||
</div> | ||
<div class="proof"> | ||
We <span class="knowledge-link" data-href="/complex/algebra_of_the_complex_plane.html#proposition-complex-number-times-its-conjugate-equals-the-modulus-squared">know</span> that \( z \cdot \overline{z} = \left \lvert z \right \rvert^{2} \), therefore \( z \cdot \frac{\overline{z}}{\left \lvert z \right \rvert^{2}} = 1 \), so by the <span class="knowledge-link" data-href="/complex/algebra_of_the_complex_plane.html#definition-inverse">definition of inverse</span> \( z^{- 1} = \frac{\overline{z}}{\left \lvert z \right \rvert^{2}} \) as needed. | ||
</div> | ||
</div> | ||
|
||
|
||
|
||
<div class="exercise"> | ||
<div class="title"></div> | ||
<div class="content"> | ||
For any \( z \in \mathbb{C} , \left \lvert \frac{z}{\overline{z}} \right \rvert = 1 \) | ||
</div> | ||
<div class="proof"> | ||
<p> | ||
By the <span class="knowledge-link" data-href="/complex/algebra_of_the_complex_plane.html#theorem-value-of-the-inverse">value of the inverse</span> we have: \( \frac{1}{\overline{z}} = \frac{\overline{\overline{z}}}{\left \lvert \overline{z} \right \rvert^{2}} \) since we know that <span class="knowledge-link" data-href="/complex/algebra_of_the_complex_plane.html#proposition-conjugate-cancels">two complex conjugates cancel</span> and <span class="knowledge-link" data-href="/complex/algebra_of_the_complex_plane.html#corollary-modulus-ignores-conjugates">modulus ignores conjugates</span>, then \( \frac{\overline{\overline{z}}}{\left \lvert \overline{z} \right \rvert^{2}} = \frac{z}{\left \lvert z \right \rvert^{2}} \) | ||
</p> | ||
<p> | ||
Now \( \left | \frac{z}{\overline{z}} \right | = \left | z \left ( \frac{z}{\left | z \right | ^{2}} \right ) \right | = \left | \left ( \frac{z}{\left | z \right | } \right )^{2} \right | = \left | \frac{z}{\left | z \right | } \right | \cdot \left | \frac{z}{\left | z \right | } \right | = 1 \cdot 1 = 1 \) as needed | ||
</p> | ||
</div> | ||
</div> | ||
|
||
<div class="definition" id="definitition-real-part-of-a-complex-number"> | ||
<div class="title">real part of a complex number</div> | ||
<div class="content"> | ||
given \( z = x + i y \in \mathbb{C} \) we say that \( x \) is the real part of \( z \) and define the function | ||
<div class="centered-content"> | ||
\( \mathcal{R} \left ( z \right ) = x \) | ||
</div> | ||
</div> | ||
</div> | ||
|
||
<div class="definition" id="definition-imaginary-part-of-a-complex-number"> | ||
<div class="title">Imaginary part of a Complex Number</div> | ||
<div class="content"> | ||
given \( z = x + i y \in \mathbb{C} \) we say that \( y \) is the imaginary part of \( z \) and define the function | ||
<div class="centered-content"> | ||
\( \mathcal{I} \left ( z \right ) = y \) | ||
</div> | ||
</div> | ||
</div> | ||
|
||
<div class="proposition" id="proposition-extracting-the-real-part-of-a-complex-number"> | ||
<div class="title">extracting the real part of a complex number</div> | ||
<div class="content"> | ||
suppose \( z \in \mathbb{C} \), then \( \mathfrak{R} \left ( z \right ) = \frac{z + \overline{z}}{2} \) | ||
</div> | ||
<div class="proof"></div> | ||
</div> | ||
|
||
|
||
<div class="proposition" id="proposition-modulus-is-greater-than-it's-components"> | ||
<div class="title">modulus is greater than it's components</div> | ||
<div class="content"> | ||
for any \( z \in \mathbb{C} \) we have both | ||
<ul> | ||
<li>\( \left | \mathfrak{R} \left ( z \right ) \right | \le \left | z \right | \)</li> | ||
<li>\( \left | \mathfrak{I} \left ( z \right ) \right | \le \left | z \right | \)</li> | ||
</ul> | ||
</div> | ||
<div class="proof"></div> | ||
</div> | ||
|
||
|
||
<div class="proposition" id="proposition-imaginary-part-distributes"> | ||
<div class="title">imaginary part distributes</div> | ||
<div class="content"> | ||
\( \mathfrak{I} \left ( z + w \right ) = \mathfrak{I} \left ( z \right ) + \mathfrak{I} \left ( w \right ) \) | ||
</div> | ||
<div class="proof"></div> | ||
</div> | ||
|
||
<div class="proposition" id="proposition-modulus-plus-one-of-it's-components-is-positive"> | ||
<div class="title">modulus plus one of it's components is positive</div> | ||
<div class="content"> | ||
Suppose that \( f{\in} \left \lbrace \mathcal{R} , \mathcal{I} \right \rbrace \), then | ||
<div class="centered-content"> | ||
\( \left | z \right | + f{\left ( z \right )} \ge 0 \) | ||
</div> | ||
</div> | ||
<div class="proof"> | ||
Let \( z = x + i y \in \mathbb{C} \) then suppose without loss of generality that \( f{=} \mathcal{R} \), then | ||
<div class="centered-content"> | ||
\( - x \le \left | x \right | = \sqrt{x^{2}} \le \sqrt{x^{2} + y^{2}} = \left | x + i y \right | \) | ||
</div> | ||
therefore \( 0 \le x + \left | x + i y \right | \) which means \( 0 \le \mathcal{R} \left ( z \right ) + \left | z \right | \) | ||
</div> | ||
</div> | ||
|
||
|
||
<div class="exercise" id="exercise-creating-squares"> | ||
<div class="title">creating squares</div> | ||
<div class="content"> | ||
without use of the triangle inequality prove that \( \left | z - 1 \right | ^{2} = \left | z \right | ^{2} + 1 - 2 \mathcal{R} \left ( z \right ) \), then conclude that \( \left | z - 1 \right | \le \left | z \right | + 1 \) | ||
</div> | ||
<div class="proof"> | ||
<p> | ||
\( \left | z - 1 \right | ^{2} \) <a href="#a-complex-number-times-it's-conjugate-equals-the-modulus-squared">=</a> \( \left ( z - 1 \right ) \cdot \overline{z - 1} = \left ( z - 1 \right ) \cdot \left ( \overline{z} - 1 \right ) = z \cdot \overline{z} - z - \overline{z} + 1 \), now recall that \( \mathcal{R} \left ( z \right ) = \frac{z + \overline{z}}{2} \) so we can continue the equality with \( \left | z \right | ^{2} - 2 \mathcal{R} \left ( z \right ) + 1 \), showing the first part | ||
</p> | ||
<p> | ||
for the second part, we can notice that \( \left ( \left | z \right | + 1 \right )^{2} = \left | z \right | ^{2} + 2 \left | z \right | + 1 \), so then \( \left | z - 1 \right | ^{2} = \left | z \right | ^{2} + 1 - 2 \mathcal{R} \left ( z \right ) = \left | z \right | ^{2} + 2 \left | z \right | - 2 \left | z \right | + 1 - 2 \mathcal{R} \left ( z \right ) = \left ( \left | z \right | + 1 \right )^{2} - 2 \left ( \left | z \right | + \mathcal{R} \left ( z \right ) \right ) \), then by | ||
<a href="#modulus-plus-one-of-it's-components-is-positive">this</a> proposition we can see that the last term in the previous equality chain is less than or equal to \( \left ( \left | z \right | + 1 \right )^{2} \) allowing us to conclude that \( \left | z - 1 \right | ^{2} \le \left ( \left | z \right | + 1 \right )^{2} \) which implies that \( \left | z - 1 \right | \le \left | z \right | + 1 \) | ||
</p> | ||
</div> | ||
|
||
|
||
|
||
</div> | ||
|
||
</body> | ||
|
||
</html> |
File renamed without changes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
homogenius coordinates, when you represent 2d information in 3d space so that we can do translations of 2d objects using linear algebra | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
30 changes: 30 additions & 0 deletions
30
html/algebra/linear/the_geometry_of_linear_transformations.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
<!DOCTYPE html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta http-equiv="X-UA-Compatible" content="IE=edge"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1"> | ||
|
||
<title>The Geometry of Linear Transformations</title> | ||
|
||
<link rel="stylesheet" href="/styles/styles.css"> | ||
<script src="/js/script.js" defer></script> | ||
|
||
</head> | ||
<body> | ||
|
||
<div class="thin-wrapper"> | ||
|
||
<div class="definition" id="definition-"> | ||
<div class="title"></div> | ||
<div class="content"> | ||
</div> | ||
</div> | ||
|
||
</div> | ||
|
||
|
||
|
||
<script src="" async defer></script> | ||
</body> | ||
</html> |
Oops, something went wrong.