Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ARCADE dataset #258

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions scripts/datasets/medical/check_arcade.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import os
import sys

from torch_em.util.debug import check_loader
from torch_em.data import MinInstanceSampler
from torch_em.data.datasets import get_arcade_loader


sys.path.append("..")


def check_arcade():
# from util import ROOT
ROOT = "/scratch/share/cidas/cca/data"

loader = get_arcade_loader(
path=os.path.join(ROOT, "arcade"),
split="test",
patch_shape=(256, 256),
batch_size=2,
download=True,
task="syntax",
resize_inputs=True,
sampler=MinInstanceSampler(),
)
check_loader(loader, 8, plt=True, save_path="./test.png")


if __name__ == "__main__":
check_arcade()
3 changes: 2 additions & 1 deletion torch_em/data/datasets/medical/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
from .acdc import get_acdc_dataset, get_acdc_loader
from .acouslic_ai import get_acouslic_ai_dataset, get_acouslic_ai_loader
from .autopet import get_autopet_loader
from .amos import get_amos_dataset, get_amos_loader
from .arcade import get_arcade_dataset, get_arcade_loader
from .autopet import get_autopet_dataset, get_autopet_loader
from .btcv import get_btcv_dataset, get_btcv_loader
from .busi import get_busi_dataset, get_busi_loader
from .camus import get_camus_dataset, get_camus_loader
Expand Down
199 changes: 199 additions & 0 deletions torch_em/data/datasets/medical/arcade.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
"""The ARCADE dataset contains annotations for coronary vessel segmentation in
X-Ray Coronary Angiograms.

The dataset is from the challenge: https://doi.org/10.1038/s41597-023-02871-z.
The dataset is located at: https://doi.org/10.5281/zenodo.10390295.
Please cite them if you use this dataset for your research.
"""

import os
from glob import glob
from tqdm import tqdm
from natsort import natsorted
from collections import defaultdict
from typing import Union, Tuple, Literal, List

import json
import numpy as np
import imageio.v3 as imageio

import torch_em

from .. import util


URL = "https://zenodo.org/records/10390295/files/arcade.zip"
CHECKSUM = "a396cdea7c92c55dc97bbf3dd8e3df517d76872b289a8bcb45513bdb3350837f"


def get_arcade_data(path: Union[os.PathLike, str], download: bool = False) -> str:
"""Download the ARCADE dataset.

Args:
path: Filepath to a folder where the data is downloaded for further processing.
download: Whether to download the data if it is not present.

Returns:
Filepath where the data is downloaded.
"""
data_dir = os.path.join(path, "arcade")
if os.path.exists(data_dir):
return data_dir

os.makedirs(path, exist_ok=True)

zip_path = os.path.join(path, "arcade.zip")
util.download_source(path=zip_path, url=URL, download=download, checksum=CHECKSUM)
util.unzip(zip_path=zip_path, dst=path)

return data_dir


def _load_annotation_json(json_file):
assert os.path.exists(json_file)

with open(json_file, encoding="utf-8") as f:
gt_ann_json_file = json.load(f)

return gt_ann_json_file


def get_arcade_paths(
path: Union[os.PathLike, str],
split: Literal['train', 'val', 'test'],
task: Literal['syntax'] = "syntax",
download: bool = False
) -> Tuple[List[str], List[str]]:
"""Get paths to the ARCADE data.

Args:
path: Filepath to a folder where the data is downloaded for further processing.
split: The data split to use. Either 'train', 'val' or 'test'.
task: The choice of task. By default, 'syntax'.
download: Whether to download the data if it is not present.

Returns:
List of filepaths for the image data.
List of filepaths for the label data.
"""
import cv2

data_dir = get_arcade_data(path=path, download=download)

assert split in ["train", "val", "test"]

if task is None:
task = "*"

image_dirs = natsorted(glob(os.path.join(data_dir, task, split, "images")))
gt_dirs = natsorted(glob(os.path.join(data_dir, task, split, "annotations")))

image_paths, gt_paths = [], []
for image_dir, gt_dir in zip(image_dirs, gt_dirs):
json_file = os.path.join(gt_dir, f"{split}.json")
gt = _load_annotation_json(json_file)

# THE RECOMMENDED WAY FROM THE DATA PROVIDERS TO CONVERT FROM COCO TO MASKS
gt_anns = defaultdict(list)
for ann in gt["annotations"]:
gt_anns[ann["image_id"]].append(ann)

for id, im in tqdm(gt_anns.items(), desc="Creating ARCADE segmentations from coco-style annotations"):
image_path = os.path.join(image_dir, f"{id}.png")
gt_path = os.path.join(gt_dir, f"{id}.tif")

image_paths.append(image_path)
gt_paths.append(gt_path)

if os.path.exists(gt_path):
continue

semantic_labels = np.zeros((512, 512), np.int32) # NOTE: The input shapes are known.
for ann in im:
points = np.array([ann["segmentation"][0][::2], ann["segmentation"][0][1::2]], np.int32).T
points = points.reshape(([-1, 1, 2]))
tmp = np.zeros((512, 512), np.int32)
cv2.fillPoly(semantic_labels, [points], (1))
semantic_labels += tmp

imageio.imwrite(gt_path, semantic_labels)

breakpoint()

return image_paths, gt_paths


def get_arcade_dataset(
path: Union[os.PathLike, str],
patch_shape: Tuple[int, int],
split: Literal['train', 'val', 'test'],
task: Literal['syntax'] = "syntax",
resize_inputs: bool = False,
download: bool = False,
**kwargs
):
"""Get the ARCADE dataset for coronary artery segmentation.

Args:
path: Filepath to a folder where the data is downloaded for further processing.
patch_shape: The patch shape to use for training.
split: The data split to use. Either 'train', 'val' or 'test'.
task: The choice of task. By default, 'syntax'.
resize_inputs: Whether to resize the inputs to the patch shape.
download: Whether to download the data if it is not present.
kwargs: Additional keyword arguments for `torch_em.default_segmentation_dataset`.

Returns:
The segmentation dataset.
"""
# TODO: the "stenosis" data has 3 channels, the "syntax" data has 1 channel
# for us, the relevant one is the "syntax" task, as we are interest in segmenting vessels for our workflows.
# for the "stenosis" task, the segmentations are only for the
# "stenotic valves" (i.e. abnormal narrowing of a certain region of the arteries)
image_paths, gt_paths = get_arcade_paths(path, split, task, download)

if resize_inputs:
resize_kwargs = {"patch_shape": patch_shape, "is_rgb": False}
kwargs, patch_shape = util.update_kwargs_for_resize_trafo(
kwargs=kwargs, patch_shape=patch_shape, resize_inputs=resize_inputs, resize_kwargs=resize_kwargs
)

return torch_em.default_segmentation_dataset(
raw_paths=image_paths,
raw_key=None,
label_paths=gt_paths,
label_key=None,
patch_shape=patch_shape,
is_seg_dataset=False,
**kwargs
)


def get_arcade_loader(
path: Union[os.PathLike, str],
patch_shape: Tuple[int, int],
batch_size: int,
split: Literal['train', 'val', 'test'],
task: Literal['syntax'] = "syntax",
resize_inputs: bool = False,
download: bool = False,
**kwargs
):
"""Get the ARCADE dataloader for coronary artery segmentation.

Args:
path: Filepath to a folder where the data is downloaded for further processing.
patch_shape: The patch shape to use for training.
batch_size: The batch size for training.
split: The data split to use. Either 'train', 'val' or 'test'.
task: The choice of task. By default, 'syntax'.
resize_inputs: Whether to resize the inputs to the patch shape.
download: Whether to download the data if it is not present.
kwargs: Additional keyword arguments for `torch_em.default_segmentation_dataset` or for the PyTorch DataLoader.

Returns:
The DataLoader.
"""
ds_kwargs, loader_kwargs = util.split_kwargs(torch_em.default_segmentation_dataset, **kwargs)
dataset = get_arcade_dataset(path, patch_shape, split, task, resize_inputs, download, **ds_kwargs)
return torch_em.get_data_loader(dataset=dataset, batch_size=batch_size, **loader_kwargs)