Skip to content

Commit

Permalink
chore(data/finset): rename ext/ext'/ext_iff (leanprover-communi…
Browse files Browse the repository at this point in the history
…ty#3069)

Now

* `ext` is the `@[ext]` lemma;
* `ext_iff` is the lemma `s₁ = s₂ ↔ ∀ a, a ∈ s₁ ↔ a ∈ s₂`.

Also add 2 `norm_cast` attributes and a lemma `ssubset_iff_of_subset`.
  • Loading branch information
urkud authored and cipher1024 committed Mar 15, 2022
1 parent 01e735b commit 2f82aa1
Show file tree
Hide file tree
Showing 20 changed files with 121 additions and 114 deletions.
6 changes: 3 additions & 3 deletions src/algebra/big_operators.lean
Original file line number Diff line number Diff line change
Expand Up @@ -850,12 +850,12 @@ theorem card_eq_sum_card_image [decidable_eq β] (f : α → β) (s : finset α)
s.card = ∑ a in s.image f, (s.filter (λ x, f x = a)).card :=
by letI := classical.dec_eq α; exact
calc s.card = ((s.image f).bind (λ a, s.filter (λ x, f x = a))).card :
congr_arg _ (finset.ext.2 $ λ x,
congr_arg _ (finset.ext $ λ x,
⟨λ hs, mem_bind.2 ⟨f x, mem_image_of_mem _ hs,
mem_filter.2 ⟨hs, rfl⟩⟩,
λ h, let ⟨a, ha₁, ha₂⟩ := mem_bind.1 h in by convert filter_subset s ha₂⟩)
... = ∑ a in s.image f, (s.filter (λ x, f x = a)).card :
card_bind (by simp [disjoint_left, finset.ext] {contextual := tt})
card_bind (by simp [disjoint_left, finset.ext_iff] {contextual := tt})

lemma gsmul_sum [add_comm_group β] {f : α → β} {s : finset α} (z : ℤ) :
gsmul z (∑ a in s, f a) = ∑ a in s, gsmul z (f a) :=
Expand Down Expand Up @@ -972,7 +972,7 @@ calc ∏ a in s, (f a + g a)
_ _ _
(λ b hb, ⟨b, by cases b; finish⟩));
intros; simp * at *; simp * at * },
{ finish [function.funext_iff, finset.ext, subset_iff] },
{ finish [function.funext_iff, finset.ext_iff, subset_iff] },
{ assume f hf,
exact ⟨s.filter (λ a : α, ∃ h : a ∈ s, f a h),
by simp, by funext; intros; simp *⟩ }
Expand Down
2 changes: 1 addition & 1 deletion src/data/complex/exponential.lean
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,7 @@ begin
rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _ (range m)),
sub_eq_iff_eq_add, ← eq_sub_iff_add_eq, add_sub_cancel'],
refine finset.sum_congr
(finset.ext.2 $ λ a, ⟨λ h, by simp at *; finish,
(finset.ext $ λ a, ⟨λ h, by simp at *; finish,
λ h, have ham : a < m := lt_of_lt_of_le (mem_range.1 h) hnm,
by simp * at *⟩)
(λ _ _, rfl),
Expand Down
2 changes: 1 addition & 1 deletion src/data/dfinsupp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -498,7 +498,7 @@ lemma mem_support_iff (f : Π₀ i, β i) : ∀i:ι, i ∈ f.support ↔ f i ≠
f.mem_support_to_fun

@[simp] lemma support_eq_empty {f : Π₀ i, β i} : f.support = ∅ ↔ f = 0 :=
⟨λ H, ext $ by simpa [finset.ext] using H, by simp {contextual:=tt}⟩
⟨λ H, ext $ by simpa [finset.ext_iff] using H, by simp {contextual:=tt}⟩

instance decidable_zero : decidable_pred (eq (0 : Π₀ i, β i)) :=
λ f, decidable_of_iff _ $ support_eq_empty.trans eq_comm
Expand Down
2 changes: 1 addition & 1 deletion src/data/equiv/denumerable.lean
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ have h₁ : (of_nat s n : ℕ) ∉ (range (of_nat s n)).filter s, by simp,
have h₂ : (range (succ (of_nat s n))).filter s =
insert (of_nat s n) ((range (of_nat s n)).filter s),
begin
simp only [finset.ext, mem_insert, mem_range, mem_filter],
simp only [finset.ext_iff, mem_insert, mem_range, mem_filter],
assume m,
exact ⟨λ h, by simp only [h.2, and_true]; exact or.symm
(lt_or_eq_of_le ((@lt_succ_iff_le _ _ _ ⟨m, h.2⟩ _).1 h.1)),
Expand Down
2 changes: 1 addition & 1 deletion src/data/finmap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ induction_on₂ s₁ s₂ $ λ _ _, mem_union
by simp [(∪), union]

theorem keys_union {s₁ s₂ : finmap β} : (s₁ ∪ s₂).keys = s₁.keys ∪ s₂.keys :=
induction_on₂ s₁ s₂ $ λ s₁ s₂, finset.ext' $ by simp [keys]
induction_on₂ s₁ s₂ $ λ s₁ s₂, finset.ext $ by simp [keys]

@[simp] theorem lookup_union_left {a} {s₁ s₂ : finmap β} :
a ∈ s₁ → lookup a (s₁ ∪ s₂) = lookup a s₁ :=
Expand Down
157 changes: 81 additions & 76 deletions src/data/finset.lean

Large diffs are not rendered by default.

8 changes: 4 additions & 4 deletions src/data/finsupp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ lemma ext_iff {f g : α →₀ β} : f = g ↔ (∀a:α, f a = g a) :=
by rintros rfl a; refl, ext⟩

@[simp] lemma support_eq_empty {f : α →₀ β} : f.support = ∅ ↔ f = 0 :=
⟨assume h, ext $ assume a, by_contradiction $ λ H, (finset.ext.1 h a).1 $
⟨assume h, ext $ assume a, by_contradiction $ λ H, (finset.ext_iff.1 h a).1 $
mem_support_iff.2 H, by rintro rfl; refl⟩

instance finsupp.decidable_eq [decidable_eq α] [decidable_eq β] : decidable_eq (α →₀ β) :=
Expand Down Expand Up @@ -945,7 +945,7 @@ lemma eq_zero_of_comap_domain_eq_zero {α₁ α₂ γ : Type*} [add_comm_monoid
comap_domain f l hf.inj_on = 0 → l = 0 :=
begin
rw [← support_eq_empty, ← support_eq_empty, comap_domain],
simp only [finset.ext, finset.not_mem_empty, iff_false, mem_preimage],
simp only [finset.ext_iff, finset.not_mem_empty, iff_false, mem_preimage],
assume h a ha,
cases hf.2.2 ha with b hb,
exact h b (hb.2.symm ▸ ha)
Expand Down Expand Up @@ -985,7 +985,7 @@ if_pos h
if_neg h

@[simp] lemma support_filter : (f.filter p).support = f.support.filter p :=
finset.ext.mpr $ assume a, if H : p a
finset.ext $ assume a, if H : p a
then by simp only [mem_support_iff, filter_apply_pos _ _ H, mem_filter, H, and_true]
else by simp only [mem_support_iff, filter_apply_neg _ _ H, mem_filter, H, and_false, ne.def,
ne_self_iff_false]
Expand Down Expand Up @@ -1580,7 +1580,7 @@ def split_comp [has_zero γ] (g : Π i, (αs i →₀ β) → γ)
end }

lemma sigma_support : l.support = l.split_support.sigma (λ i, (l.split i).support) :=
by simp only [finset.ext, split_support, split, comap_domain, mem_image,
by simp only [finset.ext_iff, split_support, split, comap_domain, mem_image,
mem_preimage, sigma.forall, mem_sigma]; tauto

lemma sigma_sum [add_comm_monoid γ] (f : (Σ (i : ι), αs i) → β → γ) :
Expand Down
8 changes: 4 additions & 4 deletions src/data/fintype/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,10 @@ by ext; simp
theorem subset_univ (s : finset α) : s ⊆ univ := λ a _, mem_univ a

theorem eq_univ_iff_forall {s : finset α} : s = univ ↔ ∀ x, x ∈ s :=
by simp [ext]
by simp [ext_iff]

@[simp] lemma univ_inter [decidable_eq α] (s : finset α) :
univ ∩ s = s := ext' $ λ a, by simp
univ ∩ s = s := ext $ λ a, by simp

@[simp] lemma inter_univ [decidable_eq α] (s : finset α) :
s ∩ univ = s :=
Expand Down Expand Up @@ -154,7 +154,7 @@ equiv.of_bijective (mono_of_fin univ h) begin
end

instance (α : Type*) : subsingleton (fintype α) :=
⟨λ ⟨s₁, h₁⟩ ⟨s₂, h₂⟩, by congr; simp [finset.ext, h₁, h₂]⟩
⟨λ ⟨s₁, h₁⟩ ⟨s₂, h₂⟩, by congr; simp [finset.ext_iff, h₁, h₂]⟩

protected def subtype {p : α → Prop} (s : finset α)
(H : ∀ x : α, x ∈ s ↔ p x) : fintype {x // p x} :=
Expand Down Expand Up @@ -840,7 +840,7 @@ by rw [perms_of_list, list.nodup_append, list.nodup_bind, pairwise_iff_nth_le];
def perms_of_finset (s : finset α) : finset (perm α) :=
quotient.hrec_on s.1 (λ l hl, ⟨perms_of_list l, nodup_perms_of_list hl⟩)
(λ a b hab, hfunext (congr_arg _ (quotient.sound hab))
(λ ha hb _, heq_of_eq $ finset.ext.2 $
(λ ha hb _, heq_of_eq $ finset.ext $
by simp [mem_perms_of_list_iff, hab.mem_iff]))
s.2

Expand Down
4 changes: 2 additions & 2 deletions src/data/fintype/card.lean
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ begin
resetI,
subst p,
congr,
simp [finset.ext]
simp [finset.ext_iff]
end

@[to_additive] lemma finset.prod_fiberwise [fintype β] [decidable_eq β] [comm_monoid γ]
Expand Down Expand Up @@ -258,7 +258,7 @@ begin
rw [← prod_sdiff (subset_univ s),
← @prod_image (α₁ ⊕ α₂) _ _ _ _ _ _ sum.inl,
← @prod_image (α₁ ⊕ α₂) _ _ _ _ _ _ sum.inr],
{ congr, rw finset.ext, rintro (a|a);
{ congr, rw finset.ext_iff, rintro (a|a);
{ simp only [mem_image, exists_eq, mem_sdiff, mem_univ, exists_false,
exists_prop_of_true, not_false_iff, and_self, not_true, and_false], } },
all_goals { intros, solve_by_elim [sum.inl.inj, sum.inr.inj], }
Expand Down
2 changes: 1 addition & 1 deletion src/data/nat/multiplicity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ lemma multiplicity_eq_card_pow_dvd {m n b : ℕ} (hm1 : m ≠ 1) (hn0 : 0 < n) (
calc multiplicity m n = ↑(Ico 1 $ ((multiplicity m n).get (finite_nat_iff.2 ⟨hm1, hn0⟩) + 1)).card :
by simp
... = ↑((finset.Ico 1 b).filter (λ i, m ^ i ∣ n)).card : congr_arg coe $ congr_arg card $
finset.ext.2 $ λ i,
finset.ext $ λ i,
have hmn : ¬ m ^ n ∣ n,
from if hm0 : m = 0
then λ _, by cases n; simp [*, lt_irrefl, nat.pow_succ] at *
Expand Down
2 changes: 1 addition & 1 deletion src/data/nat/totient.lean
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ calc ∑ m in (range n.succ).filter (∣ n), φ m
... = ((filter (∣ n) (range n.succ)).bind (λ d, (range n).filter (λ m, gcd n m = d))).card :
(card_bind (by intros; apply disjoint_filter.2; cc)).symm
... = (range n).card :
congr_arg card (finset.ext.2 (λ m, ⟨by finish,
congr_arg card (finset.ext (λ m, ⟨by finish,
λ hm, have h : m < n, from mem_range.1 hm,
mem_bind.2 ⟨gcd n m, mem_filter.2 ⟨mem_range.2 (lt_succ_of_le (le_of_dvd (lt_of_le_of_lt (nat.zero_le _) h)
(gcd_dvd_left _ _))), gcd_dvd_left _ _⟩, mem_filter.2 ⟨hm, rfl⟩⟩⟩))
Expand Down
3 changes: 3 additions & 0 deletions src/data/set/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,9 @@ not_subset.1 h.2
lemma ssubset_iff_subset_ne {s t : set α} : s ⊂ t ↔ s ⊆ t ∧ s ≠ t :=
by split; simp [set.ssubset_def, ne.def, set.subset.antisymm_iff] {contextual := tt}

lemma ssubset_iff_of_subset {s t : set α} (h : s ⊆ t) : s ⊂ t ↔ ∃ x ∈ t, x ∉ s :=
⟨exists_of_ssubset, λ ⟨x, hxt, hxs⟩, ⟨h, λ h, hxs $ h hxt⟩⟩

theorem not_mem_empty (x : α) : ¬ (x ∈ (∅ : set α)) :=
assume h : x ∈ ∅, h

Expand Down
2 changes: 1 addition & 1 deletion src/data/set/finite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ end

lemma to_finset_insert [decidable_eq α] {a : α} {s : set α} (hs : finite s) :
(finite_insert a hs).to_finset = insert a hs.to_finset :=
finset.ext.mpr $ by simp
finset.ext $ by simp

@[elab_as_eliminator]
theorem finite.induction_on {C : set α → Prop} {s : set α} (h : finite s)
Expand Down
2 changes: 1 addition & 1 deletion src/field_theory/finite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ lemma card_image_polynomial_eval [fintype R] [decidable_eq R] {p : polynomial R}
fintype.card R ≤ nat_degree p * (univ.image (λ x, eval x p)).card :=
finset.card_le_mul_card_image _ _
(λ a _, calc _ = (p - C a).roots.card : congr_arg card
(by simp [finset.ext, mem_roots_sub_C hp, -sub_eq_add_neg])
(by simp [finset.ext_iff, mem_roots_sub_C hp, -sub_eq_add_neg])
... ≤ _ : card_roots_sub_C' hp)

/-- If `f` and `g` are quadratic polynomials, then the `f.eval a + g.eval b = 0` has a solution. -/
Expand Down
8 changes: 4 additions & 4 deletions src/group_theory/order_of_element.lean
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ lemma sum_card_order_of_eq_card_pow_eq_one {n : ℕ} (hn : 0 < n) :
= (finset.univ.filter (λ a : α, a ^ n = 1)).card :=
calc ∑ m in (finset.range n.succ).filter (∣ n), (finset.univ.filter (λ a : α, order_of a = m)).card
= _ : (finset.card_bind (by { intros, apply finset.disjoint_filter.2, cc })).symm
... = _ : congr_arg finset.card (finset.ext.2 (begin
... = _ : congr_arg finset.card (finset.ext (begin
assume a,
suffices : order_of a ≤ n ∧ order_of a ∣ n ↔ a ^ n = 1,
{ simpa [nat.lt_succ_iff], },
Expand Down Expand Up @@ -443,7 +443,7 @@ have h : ∑ m in (range d.succ).filter (∣ d.succ),
nat.div_div_self hm (succ_pos _)]⟩⟩)),
have hinsert : insert d.succ ((range d.succ).filter (∣ d.succ))
= (range d.succ.succ).filter (∣ d.succ),
from (finset.ext.2 $ λ x, ⟨λ h, (mem_insert.1 h).elim (λ h, by simp [h, range_succ])
from (finset.ext $ λ x, ⟨λ h, (mem_insert.1 h).elim (λ h, by simp [h, range_succ])
(by clear _let_match; simp [range_succ]; tauto), by clear _let_match; simp [range_succ] {contextual := tt}; tauto⟩),
have hinsert₁ : d.succ ∉ (range d.succ).filter (∣ d.succ),
by simp [mem_range, zero_le_one, le_succ],
Expand Down Expand Up @@ -471,15 +471,15 @@ let c := fintype.card α in
have hc0 : 0 < c, from fintype.card_pos_iff.21⟩,
lt_irrefl c $
calc c = (univ.filter (λ a : α, a ^ c = 1)).card :
congr_arg card $ by simp [finset.ext, c]
congr_arg card $ by simp [finset.ext_iff, c]
... = ∑ m in (range c.succ).filter (∣ c),
(univ.filter (λ a : α, order_of a = m)).card :
(sum_card_order_of_eq_card_pow_eq_one hc0).symm
... = ∑ m in ((range c.succ).filter (∣ c)).erase d,
(univ.filter (λ a : α, order_of a = m)).card :
eq.symm (sum_subset (erase_subset _ _) (λ m hm₁ hm₂,
have m = d, by simp at *; cc,
by simp [*, finset.ext] at *; exact h0))
by simp [*, finset.ext_iff] at *; exact h0))
... ≤ ∑ m in ((range c.succ).filter (∣ c)).erase d, φ m :
sum_le_sum (λ m hm,
have hmc : m ∣ c, by simp at hm; tauto,
Expand Down
6 changes: 3 additions & 3 deletions src/group_theory/perm/sign.lean
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,7 @@ end
lemma support_swap_mul_eq [fintype α] {f : perm α} {x : α}
(hffx : f (f x) ≠ x) : (swap x (f x) * f).support = f.support.erase x :=
have hfx : f x ≠ x, from λ hfx, by simpa [hfx] using hffx,
finset.ext.2 $ λ y,
finset.ext $ λ y,
⟨λ hy, have hy' : (swap x (f x) * f) y ≠ y, from mem_support.1 hy,
mem_erase.2 ⟨λ hyx, by simp [hyx, mul_apply, *] at *,
mem_support.2 $ λ hfy,
Expand Down Expand Up @@ -666,11 +666,11 @@ lemma is_cycle_swap_mul {f : perm α} (hf : is_cycle f) {x : α}
is_cycle_swap_mul_aux₂ (i - 1) hy hi⟩

@[simp] lemma support_swap [fintype α] {x y : α} (hxy : x ≠ y) : (swap x y).support = {x, y} :=
finset.ext.2 $ λ a, by simp [swap_apply_def]; split_ifs; cc
finset.ext $ λ a, by simp [swap_apply_def]; split_ifs; cc

lemma card_support_swap [fintype α] {x y : α} (hxy : x ≠ y) : (swap x y).support.card = 2 :=
show (swap x y).support.card = finset.card ⟨x::y::0, by simp [hxy]⟩,
from congr_arg card $ by rw [support_swap hxy]; simp [*, finset.ext]; cc
from congr_arg card $ by rw [support_swap hxy]; simp [*, finset.ext_iff]; cc

lemma sign_cycle [fintype α] : ∀ {f : perm α} (hf : is_cycle f),
sign f = -(-1) ^ f.support.card
Expand Down
3 changes: 1 addition & 2 deletions src/linear_algebra/basis.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1138,8 +1138,7 @@ assume t, finset.induction_on t
hsu, by simp [eq, hb₂t', hb₁t, hb₁s']⟩)),
begin
have eq : t.filter (λx, x ∈ s) ∪ t.filter (λx, x ∉ s) = t,
{ apply finset.ext.mpr,
intro x,
{ ext1 x,
by_cases x ∈ s; simp * },
apply exists.elim (this (t.filter (λx, x ∉ s)) (t.filter (λx, x ∈ s))
(by simp [set.subset_def]) (by simp [set.ext_iff] {contextual := tt}) (by rwa [eq])),
Expand Down
4 changes: 2 additions & 2 deletions src/measure_theory/outer_measure.lean
Original file line number Diff line number Diff line change
Expand Up @@ -86,12 +86,12 @@ begin
rwa [← e, mem_decode2.1 (option.get_mem (H m hm))] at this },
{ intros b h,
refine ⟨encode b, _, _⟩,
{ convert h, simp [ext_iff, encodek2] },
{ convert h, simp [set.ext_iff, encodek2] },
{ exact option.get_of_mem _ (encodek2 _) } },
{ intros n h,
transitivity, swap,
rw [show decode2 β n = _, from option.get_mem (H n h)],
congr, simp [ext_iff, -option.some_get] }
congr, simp [set.ext_iff, -option.some_get] }
end

protected theorem Union (m : outer_measure α)
Expand Down
6 changes: 3 additions & 3 deletions src/number_theory/quadratic_reciprocity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ lemma div_eq_filter_card {a b c : ℕ} (hb0 : 0 < b) (hc : a / b ≤ c) : a / b
((Ico 1 c.succ).filter (λ x, x * b ≤ a)).card :=
calc a / b = (Ico 1 (a / b).succ).card : by simp
... = ((Ico 1 c.succ).filter (λ x, x * b ≤ a)).card :
congr_arg _$ finset.ext.2 $ λ x,
congr_arg _ $ finset.ext $ λ x,
have x * b ≤ a → x ≤ c,
from λ h, le_trans (by rwa [le_div_iff_mul_le _ _ hb0]) hc,
by simp [lt_succ_iff, le_div_iff_mul_le _ _ hb0]; tauto
Expand All @@ -292,7 +292,7 @@ private lemma sum_Ico_eq_card_lt {p q : ℕ} :
∑ a in Ico 1 (p / 2).succ, (a * q) / p =
(((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q)).card :=
if hp0 : p = 0 then by simp [hp0, finset.ext]
if hp0 : p = 0 then by simp [hp0, finset.ext_iff]
else
calc ∑ a in Ico 1 (p / 2).succ, (a * q) / p =
∑ a in Ico 1 (p / 2).succ,
Expand Down Expand Up @@ -348,7 +348,7 @@ have hunion : ((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p) =
((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)),
from finset.ext.2 $ λ x, by have := le_total (x.2 * p) (x.1 * q); simp; tauto,
from finset.ext $ λ x, by have := le_total (x.2 * p) (x.1 * q); simp; tauto,
by rw [sum_Ico_eq_card_lt, sum_Ico_eq_card_lt, hswap, ← card_disjoint_union hdisj, hunion,
card_product];
simp
Expand Down
6 changes: 3 additions & 3 deletions src/topology/metric_space/emetric_space.lean
Original file line number Diff line number Diff line change
Expand Up @@ -494,12 +494,12 @@ instance emetric_space_pi [∀b, emetric_space (π b)] : emetric_space (Πb, π
end,
to_uniform_space := Pi.uniform_space _,
uniformity_edist := begin
simp only [Pi.uniformity, emetric_space.uniformity_edist, comap_infi, gt_iff_lt, preimage_set_of_eq,
comap_principal],
simp only [Pi.uniformity, emetric_space.uniformity_edist, comap_infi, gt_iff_lt,
preimage_set_of_eq, comap_principal],
rw infi_comm, congr, funext ε,
rw infi_comm, congr, funext εpos,
change 0 < ε at εpos,
simp [ext_iff, εpos]
simp [set.ext_iff, εpos]
end }

end pi
Expand Down

0 comments on commit 2f82aa1

Please sign in to comment.