-
-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added
backward
for Conv1d as well as created an helper file `functi…
…onal.rs` (#202) * [Created] functional.rs [Added] 'pad1d', 'conv1d' functions * [Added] 'backward' for Conv1D * clippy warning fix * fix: multiple imports
- Loading branch information
Showing
4 changed files
with
451 additions
and
123 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
//! BSD 3-Clause License | ||
//! | ||
//! Copyright (c) 2024, The Delta Project Δ | ||
//! | ||
//! Redistribution and use in source and binary forms, with or without | ||
//! modification, are permitted provided that the following conditions are met: | ||
//! | ||
//! 1. Redistributions of source code must retain the above copyright notice, this | ||
//! list of conditions and the following disclaimer. | ||
//! | ||
//! 2. Redistributions in binary form must reproduce the above copyright notice, | ||
//! this list of conditions and the following disclaimer in the documentation | ||
//! and/or other materials provided with the distribution. | ||
//! | ||
//! 3. Neither the name of the copyright holder nor the names of its | ||
//! contributors may be used to endorse or promote products derived from | ||
//! this software without specific prior written permission. | ||
//! | ||
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
//! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
//! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
//! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
//! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
//! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
//! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
//! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
use ndarray::{s, Array, ArrayView, Axis, Ix1, IxDyn, Shape}; | ||
use rand::Error; | ||
|
||
use crate::common::{CoreError, Tensor}; | ||
|
||
|
||
/// Pads a 1D input tensor with zeros on both sides. | ||
/// | ||
/// # Arguments | ||
/// * `input` - Input tensor of shape (in_length) | ||
/// * `padding` - Number of zeros to pad on each side | ||
/// | ||
/// # Returns | ||
/// * Padded tensor of shape (in_length + 2 * padding) | ||
pub fn pad1d_raw(input: &ArrayView<f32, Ix1>, padding: usize) -> Array<f32, Ix1> { | ||
let input_len = input.len(); | ||
let padded_len = input_len + 2 * padding; | ||
let mut padded_input = Array::zeros(padded_len); | ||
padded_input.slice_mut(s![padding..padding + input_len]) | ||
.assign(input); | ||
|
||
padded_input | ||
} | ||
|
||
/// Pads a 3D input tensor with zeros on both sides of a 1D axis | ||
/// | ||
/// # Arguments | ||
/// * `input` - Input tensor of shape (batch_size, in_channels, in_length) | ||
/// * `padding` - Number of zeros to pad on each side | ||
/// | ||
/// # Returns | ||
/// Padded tensor of shape (batch_size, in_channels, in_length + 2 * padding) | ||
/// | ||
pub fn pad_1d(input: &Tensor, padding: usize, axis: Axis) -> Result<Tensor, Error> { | ||
|
||
let shape = input.shape().raw_dim().clone(); | ||
|
||
let mut padded_shape = shape.clone(); | ||
match axis { | ||
Axis(0) => padded_shape[0] += 2 * padding, | ||
Axis(1) => padded_shape[1] += 2 * padding, | ||
Axis(2) => padded_shape[2] += 2 * padding, | ||
_ => panic!("Unsupported axis for padding"), | ||
} | ||
|
||
let mut expanded = Tensor::zeros( | ||
Shape::from(padded_shape), | ||
input.device.clone() | ||
); | ||
|
||
match axis { | ||
Axis(0) => expanded.data.slice_mut(s![padding..padding + shape[0], .., ..]).assign(&input.data), | ||
Axis(1) => expanded.data.slice_mut(s![.., padding..padding + shape[1], ..]).assign(&input.data), | ||
Axis(2) => expanded.data.slice_mut(s![.., .., padding..padding + shape[2]]).assign(&input.data), | ||
_ => panic!("Unsupported axis for padding"), | ||
} | ||
|
||
Ok(expanded) | ||
} | ||
|
||
/// 1D Convolutional for batched data with weights and biases. | ||
/// | ||
/// # Arguments | ||
/// | ||
/// * `inputs` - Input tensor of shape (batch_size, in_channels, in_length) | ||
/// * `weight` - Weight tensor of shape (out_channels, in_channels, kernel_size) | ||
/// * `bias` - Bias tensor of shape (out_channels) | ||
/// * `stride` - Stride of the convolution | ||
/// | ||
/// # Returns | ||
/// | ||
/// * Output tensor of shape (batch_size, out_channels, out_length) | ||
/// | ||
pub fn conv1d(inputs: &Tensor, weight: &Tensor, bias: Option<&Tensor>, stride: usize, padding: usize, dilation: usize) -> Result<Tensor, CoreError> { | ||
|
||
|
||
// Get input dimensions | ||
let raw_input_dim = inputs.shape().raw_dim().clone(); | ||
let (batch_size, in_ch, in_len) = (raw_input_dim[0], raw_input_dim[1], raw_input_dim[2]); | ||
|
||
// Get weight dimensions | ||
let raw_weight_dim = weight.shape().raw_dim().clone(); | ||
let (out_ch, in_ch_w, kernel_size) = (raw_weight_dim[0], raw_weight_dim[1], raw_weight_dim[2]); | ||
|
||
if in_ch != in_ch_w { | ||
return Err(CoreError::InvalidShape); | ||
} | ||
|
||
let bias = match bias { | ||
Some(b) => b, | ||
None => &Tensor::zeros(Shape::from(IxDyn(&[out_ch])), inputs.device.clone()), | ||
}; | ||
|
||
let dilated_kernel_len = (kernel_size - 1) * dilation + 1; | ||
let out_len = (in_len + 2 * padding - dilated_kernel_len) / stride + 1; | ||
|
||
let out_shape = Shape::from(IxDyn(&[batch_size, out_ch, out_len])); | ||
let mut output = Tensor::zeros(out_shape, inputs.device.clone()); | ||
|
||
for batch in 0..batch_size { | ||
for o in 0..out_ch { | ||
output.data.slice_mut(s![batch, o, ..]).assign( | ||
{ | ||
let mut tmp = Array::zeros( | ||
Shape::from(IxDyn(&[out_len])), | ||
); | ||
for i in 0..in_ch { | ||
let kernel_slice = weight.data.slice(s![o, i, ..]); | ||
let input_slice = inputs.data.slice(s![batch, i, ..]); | ||
tmp += &conv1d_raw(&input_slice, &kernel_slice, stride, padding, dilation); | ||
} | ||
|
||
&(tmp + bias.data[[o]]).clone() | ||
} | ||
); | ||
} | ||
} | ||
|
||
Ok(output) | ||
} | ||
|
||
/// Convolution operation for two 1D vectors. | ||
/// | ||
/// # Arguments | ||
/// | ||
/// * `input` - The input tensor. | ||
/// * `kernel` - The kernel tensor. | ||
/// * `stride` - The stride for the convolution operation. | ||
/// | ||
/// # Returns | ||
/// | ||
/// The output tensor. | ||
/// | ||
pub fn conv1d_raw(input: &ArrayView<f32, Ix1>, kernel: &ArrayView<f32, Ix1>, stride: usize, padding: usize, dilation: usize) -> Array<f32, Ix1> { | ||
let input_len = input.len(); | ||
let kernel_len = kernel.len(); | ||
let dilated_kernel_len = (kernel_len - 1) * dilation + 1; | ||
|
||
// Calculate output length using the formula: | ||
let output_len = (input_len + 2 * padding - dilated_kernel_len) / stride + 1; | ||
|
||
// Create output array filled with zeros | ||
let mut output = Array::zeros(output_len); | ||
|
||
// Create padded input if necessary | ||
let padded_len = input_len + 2 * padding; | ||
let mut padded_input = Array::zeros(padded_len); | ||
padded_input.slice_mut(s![padding..padding + input_len]) | ||
.assign(input); | ||
|
||
// Perform convolution | ||
for out_idx in 0..output_len { | ||
let input_start_idx = out_idx * stride; | ||
let mut sum = 0.0; | ||
|
||
for (k_idx, &k_val) in kernel.iter().enumerate() { | ||
let in_idx = input_start_idx + k_idx * dilation; | ||
if in_idx < padded_len { | ||
sum += padded_input[in_idx] * k_val; | ||
} | ||
} | ||
|
||
output[out_idx] = sum; | ||
} | ||
|
||
output | ||
} | ||
|
||
|
||
|
||
|
||
#[cfg(test)] | ||
mod tests { | ||
use std::f32; | ||
|
||
use crate::{common::Tensor, devices::Device, neuralnet::functional as F}; | ||
use ndarray::{array, Array, ArrayD, Axis, IxDyn, Shape}; | ||
|
||
#[test] | ||
fn test_conv1d_raw() { | ||
|
||
let input = Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]); | ||
let kernel = Array::from(vec![1.0, 0.5]); | ||
let stride = 1; | ||
let padding = 1; | ||
let dilation = 2; | ||
|
||
let output = F::conv1d_raw(&input.view(), &kernel.view(), stride, padding, dilation); | ||
assert_eq!(output, Array::from(vec![1.0, 2.5, 4.0, 5.5, 4.0])); | ||
} | ||
|
||
#[test] | ||
fn test_conv1d() { | ||
|
||
let input = Tensor::new( | ||
vec![1.0, 2.0, 3.0, 4.0, 5.0], | ||
Shape::from(IxDyn(&[1, 1, 5])), // 1 batch, 1 channel, 5 length | ||
); | ||
let weight = Tensor::ones( | ||
Shape::from(IxDyn(&[3, 1, 2])), // 3 output channels, 1 input channel, 2 kernel size | ||
Device::default(), | ||
); | ||
let bias = Tensor::ones( | ||
Shape::from(IxDyn(&[3])), // 3 output channels | ||
Device::default(), | ||
); | ||
|
||
let stride = 1; | ||
let padding = 0; | ||
let dilation = 1; | ||
|
||
let output = F::conv1d( | ||
&input, | ||
&weight, | ||
Some(&bias), | ||
stride, | ||
padding, | ||
dilation, | ||
).unwrap(); | ||
|
||
assert_eq!(output, Tensor::new( | ||
vec![4.0, 6.0, 8.0, 10.0, | ||
4.0, 6.0, 8.0, 10.0, | ||
4.0, 6.0, 8.0, 10.0 ], | ||
Shape::from(IxDyn(&[1, 3, 4])), // 1 batch, 3 output channels, 4 length | ||
)); | ||
|
||
} | ||
|
||
#[test] | ||
fn test_pad1d_raw() { | ||
|
||
let input = Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]); | ||
let padding = 2; | ||
let padded_input = F::pad1d_raw(&input.view(), padding); | ||
assert_eq!(padded_input, Array::from(vec![0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 0.0])); | ||
|
||
} | ||
|
||
#[test] | ||
fn test_pad_1d() { | ||
let input = Tensor::new( | ||
vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], | ||
Shape::from(IxDyn(&[2, 2, 2])), // 1 batch, 1 channel, 5 length | ||
); | ||
let padding = 1; | ||
let axis = Axis(2); | ||
let expanded = F::pad_1d(&input, padding, axis).unwrap(); | ||
// expanded.slice_mut(s![.., 1..5]).assign(&input.data); | ||
|
||
let a = array! [[[0.0, 1.0, 2.0, 0.0], | ||
[ 0.0, 3.0, 4.0, 0.0]], | ||
[[ 0.0, 5.0, 6.0, 0.0], | ||
[0.0, 7.0, 8.0, 0.0]]]; | ||
let a_dynamic: ArrayD<f32> = a.into_dyn(); | ||
|
||
assert_eq!(expanded.data, a_dynamic); | ||
} | ||
} |
Oops, something went wrong.