-
Notifications
You must be signed in to change notification settings - Fork 236
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1533 from anuprulez/tabpfn
Add a Galaxy tool for TabPFN package (by Prof. Hutter's group)
- Loading branch information
Showing
5 changed files
with
970 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
name: tabpfn | ||
owner: bgruening | ||
description: Tabular data prediction using TabPFN using Pytorch. | ||
long_description: | | ||
The TabPFN is a neural network that learned to do tabular data prediction. | ||
This is the original CUDA-supporting pytorch impelementation. | ||
remote_repository_url: https://github.com/bgruening/galaxytools/tree/master/tools/tabpfn | ||
homepage_url: https://github.com/bgruening/galaxytools/tree/master/tools/tabpfn | ||
type: | ||
categories: | ||
- Machine Learning | ||
maintainers: | ||
anuprulez |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
""" | ||
Tabular data prediction using TabPFN | ||
""" | ||
import argparse | ||
import time | ||
|
||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
from sklearn.metrics import accuracy_score, average_precision_score, precision_recall_curve | ||
from tabpfn import TabPFNClassifier | ||
|
||
|
||
def separate_features_labels(data): | ||
df = pd.read_csv(data, sep="\t") | ||
labels = df.iloc[:, -1] | ||
features = df.iloc[:, :-1] | ||
return features, labels | ||
|
||
|
||
def train_evaluate(args): | ||
""" | ||
Train TabPFN | ||
""" | ||
tr_features, tr_labels = separate_features_labels(args["train_data"]) | ||
te_features, te_labels = separate_features_labels(args["test_data"]) | ||
classifier = TabPFNClassifier(device='cpu') | ||
s_time = time.time() | ||
classifier.fit(tr_features, tr_labels) | ||
e_time = time.time() | ||
print("Time taken by TabPFN for training: {} seconds".format(e_time - s_time)) | ||
y_eval = classifier.predict(te_features) | ||
print('Accuracy', accuracy_score(te_labels, y_eval)) | ||
pred_probas_test = classifier.predict_proba(te_features) | ||
te_features["predicted_labels"] = y_eval | ||
te_features.to_csv("output_predicted_data", sep="\t", index=None) | ||
precision, recall, thresholds = precision_recall_curve(te_labels, pred_probas_test[:, 1]) | ||
average_precision = average_precision_score(te_labels, pred_probas_test[:, 1]) | ||
plt.figure(figsize=(8, 6)) | ||
plt.plot(recall, precision, label=f'Precision-Recall Curve (AP={average_precision:.2f})') | ||
plt.xlabel('Recall') | ||
plt.ylabel('Precision') | ||
plt.title('Precision-Recall Curve') | ||
plt.legend(loc='lower left') | ||
plt.grid(True) | ||
plt.savefig("output_prec_recall_curve.png") | ||
|
||
|
||
if __name__ == "__main__": | ||
arg_parser = argparse.ArgumentParser() | ||
arg_parser.add_argument("-trdata", "--train_data", required=True, help="Train data") | ||
arg_parser.add_argument("-tedata", "--test_data", required=True, help="Test data") | ||
# get argument values | ||
args = vars(arg_parser.parse_args()) | ||
train_evaluate(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
<tool id="tabpfn" name="Tabular data prediction using TabPFN" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="23.0"> | ||
<description>with PyTorch</description> | ||
<macros> | ||
<token name="@TOOL_VERSION@">2.0.3</token> | ||
<token name="@VERSION_SUFFIX@">0</token> | ||
</macros> | ||
<creator> | ||
<organization name="European Galaxy Team" url="https://galaxyproject.org/eu/" /> | ||
<person givenName="Anup" familyName="Kumar" email="[email protected]" /> | ||
<person givenName="Frank" familyName="Hutter" email="[email protected]" /> | ||
</creator> | ||
<requirements> | ||
<requirement type="package" version="@TOOL_VERSION@">tabpfn</requirement> | ||
<requirement type="package" version="2.2.2">pandas</requirement> | ||
<requirement type="package" version="3.9.2">matplotlib</requirement> | ||
</requirements> | ||
<version_command>echo "@VERSION@"</version_command> | ||
<command detect_errors="aggressive"> | ||
<![CDATA[ | ||
python '$__tool_directory__/main.py' | ||
--train_data '$train_data' | ||
--test_data '$test_data' | ||
]]> | ||
</command> | ||
<inputs> | ||
<param name="train_data" type="data" format="tabular" label="Train data" help="Please provide training data for training model."/> | ||
<param name="test_data" type="data" format="tabular" label="Test data" help="Please provide test data for evaluating model."/> | ||
</inputs> | ||
<outputs> | ||
<data format="tabular" name="output_predicted_data" from_work_dir="output_predicted_data" label="Predicted data"></data> | ||
<data format="png" name="output_prec_recall_curve" from_work_dir="output_prec_recall_curve" label="Precision-recall curve"></data> | ||
</outputs> | ||
<tests> | ||
<test> | ||
<param name="train_data" value="local_train_rows.tabular" ftype="tabular" /> | ||
<param name="test_data" value="local_test_rows.tabular" ftype="tabular" /> | ||
<output name="output_predicted_data"> | ||
<assert_contents> | ||
<has_n_columns n="42" /> | ||
<has_n_lines n="3" /> | ||
</assert_contents> | ||
</output> | ||
</test> | ||
</tests> | ||
<help> | ||
<![CDATA[ | ||
**What it does** | ||
Classification on tabular data by TabPFN | ||
**Input files** | ||
- Training data: the training data should contain features and the last column should be the class labels. It could either be tabular or in CSV format. | ||
- Test data: the test data should also contain the same features as the training data and the last column should be the class labels. It could either be tabular or in CSV format. | ||
**Output files** | ||
- Predicted data along with predicted labels | ||
]]> | ||
</help> | ||
<citations> | ||
<citation type="doi">10.1038/s41586-024-08328-6</citation> | ||
</citations> | ||
</tool> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
SpMax_L J_Dz(e) nHM F01[N-N] F04[C-N] NssssC nCb- C% nCp nO F03[C-N] SdssC HyWi_B(m) LOC SM6_L F03[C-O] Me Mi nN-N nArNO2 nCRX3 SpPosA_B(p) nCIR B01[C-Br] B03[C-Cl] N-073 SpMax_A Psi_i_1d B04[C-Br] SdO TI2_L nCrt C-026 F02[C-N] nHDon SpMax_B(m) Psi_i_A nN SM6_B(m) nArCOOR nX predicted_labels | ||
3.919 2.6909 0 0 0 0 0 31.4 2 0 0 0 3.106 2.55 9.002 0 0.96 1.142 0 0 0 1.201 0 0 0 0 1.932 0.011 0 0 4.489 0 0 0 0 2.949 1.591 0 7.253 0 0 1 | ||
4.17 2.1144 0 0 0 0 0 30.8 1 1 0 0 2.461 1.393 8.723 1 0.989 1.144 0 0 0 1.104 1 0 0 0 2.214 -0.204 0 0 1.542 0 0 0 0 3.315 1.967 0 7.257 0 0 1 |
Oops, something went wrong.