Skip to content

Commit

Permalink
Add changes for porting YOLOv3-416 to Autoware.Auto
Browse files Browse the repository at this point in the history
Signed-off-by: Divya Aggarwal <[email protected]>
  • Loading branch information
divya-aggarwal-apex committed Jan 31, 2022
1 parent c7ae922 commit e48cada
Show file tree
Hide file tree
Showing 7 changed files with 678 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# YOLO V3 Darknet Conversion to Keras

The network definition and weights come from [darknet
website](https://pjreddie.com/darknet/yolo/). It is converted to the keras model using [this](https://github.com/qqwweee/keras-yolo3) repository.

It has been converted to onnx format
using [tf2onnx](https://github.com/onnx/tensorflow-onnx).

## Executing the model

All commands should be run from the root of the model zoo directory.

1.Compile a local image of `autoware/model-zoo-tvm-cli`

```bash
$./scripts/tvm_cli/build.sh
```

2.Compile the model by running the TVM CLI script in a docker container

```bash
$ MODEL_DIR=$(pwd)/perception/camera_obstacle_detection/yolo_v3/tensorflow_fp32_coco/
$ export MODEL_DIR
$ docker run \
-it --rm \
-v ${MODEL_DIR}:${MODEL_DIR} -w ${MODEL_DIR} \
-u $(id -u ${USER}):$(id -g ${USER}) \
autoware/model-zoo-tvm-cli:local \
compile \
--config ${MODEL_DIR}/definition.yaml \
--output_path ${MODEL_DIR}/execute_model/build
```

3.Compile the c++ pipeline

```bash
$ docker run \
-it --rm \
-v ${MODEL_DIR}:${MODEL_DIR} -w ${MODEL_DIR}/execute_model/build \
-u $(id -u ${USER}):$(id -g ${USER}) \
--entrypoint "" \
autoware/model-zoo-tvm-cli:local \
bash -c "cmake .. && make -j"
```

4.Download a sample image and copy some files needed for decoding detections

```bash
$ curl https://raw.githubusercontent.com/pjreddie/darknet/master/data/dog.jpg \
> ${MODEL_DIR}/execute_model/build/test_image_0.jpg
$ cp ${MODEL_DIR}/model_files/labels.txt ${MODEL_DIR}/execute_model/build/
$ cp ${MODEL_DIR}/model_files/anchors.csv ${MODEL_DIR}/execute_model/build/
```

5.Run the detection pipeline inside a docker container. The output result can be obtained in two ways:

- **Save as an image**: saves the result of the pipeline as an image file in the build directory, the filename `output.jpg` can be changed in the command if needed:

```bash
$ docker run \
-it --rm \
--net=host \
-v ${MODEL_DIR}:${MODEL_DIR} \
-w ${MODEL_DIR}/execute_model/build \
--entrypoint "" \
autoware/model-zoo-tvm-cli:local \
./execute_model output.jpg
```

- **Display in a X11 window**: X draw calls are forwarded to the host so the detection results can be displayed in a X11 window.

```bash
$ docker run \
-it --rm \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
-v ${HOME}/.Xauthority:${HOME}/.Xauthority:rw \
-e XAUTHORITY=${HOME}/.Xauthority \
-e DISPLAY=$DISPLAY \
--net=host \
-v ${MODEL_DIR}:${MODEL_DIR} \
-w ${MODEL_DIR}/execute_model/build \
--entrypoint "" \
autoware/model-zoo-tvm-cli:local \
./execute_model
```

For more information about getting the TVM docker image, see the TVM CLI
[documentation](../../../../scripts/tvm_cli/README.md).
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
version: 1
enable_testing: true
network:
filename: ./model_files/yolov3-416.onnx
framework: ONNX
provenance: ./README.md
training: COCO dataset, https://pjreddie.com/darknet/yolo/
model_license: Apache-2.0
data_license: CC-BY-4.0
network_parameters:
datatype: float32
input_nodes:
- name: input
description: Camera Image RGB
shape:
- 1
- 416
- 416
- 3
output_nodes:
- name: conv2d_58
description:
shape:
- 1
- 13
- 13
- 255

- name: conv2d_66
description:
shape:
- 1
- 26
- 26
- 255

- name: conv2d_74
description:
shape:
- 1
- 52
- 52
- 255
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Copyright 2021 Apex.AI, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

cmake_minimum_required(VERSION 3.0)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 14)

project(execute_model)

find_package( OpenCV REQUIRED )

file(GLOB SRC_FILES "*.cpp")

set(TVM_ROOT /usr/tvm)
set(DMLC_CORE ${TVM_ROOT}/3rdparty/dmlc-core)
set(DLPACK ${TVM_ROOT}/3rdparty/dlpack)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O3")

add_executable(${CMAKE_PROJECT_NAME}
${ROS_NODE_FILE}
${SRC_FILES}
)

target_link_libraries(${CMAKE_PROJECT_NAME}
${OpenCV_LIBS}
dl
pthread
tvm_runtime
)

target_include_directories (${CMAKE_PROJECT_NAME} PRIVATE
${TVM_ROOT}/include
${DMLC_CORE}/include
${DLPACK}/include
)
Loading

0 comments on commit e48cada

Please sign in to comment.