Skip to content

Commit

Permalink
rename omega => LambertW.Omega and update its def
Browse files Browse the repository at this point in the history
using the code from JuliaMath/IrrationalConstants.jl/issues/12

No __init__() section is required
  • Loading branch information
alyst committed Jan 3, 2022
1 parent 25543af commit d20cdb2
Show file tree
Hide file tree
Showing 3 changed files with 51 additions and 54 deletions.
10 changes: 2 additions & 8 deletions src/SpecialFunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -80,14 +80,8 @@ export
cosint,
lbinomial,
lambertw,
lambertwbp

const omega_const_bf_ = Ref{BigFloat}()
function __init__()
# allocate storage for this BigFloat constant each time this module is loaded
omega_const_bf_[] =
parse(BigFloat,"0.5671432904097838729999686622103555497538157871865125081351310792230457930866845666932194")
end
lambertwbp,
LambertW

include("bessel.jl")
include("erf.jl")
Expand Down
60 changes: 25 additions & 35 deletions src/lambertw.jl
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ _lambertw(x::Irrational, k::Integer, maxits::Integer) = _lambertw(float(x), k, m
function _lambertw(x::Union{Integer, Rational}, k::Integer, maxits::Integer)
if k == 0
x == 0 && return float(zero(x))
x == 1 && return convert(typeof(float(x)), omega) # must be a more efficient way
x == 1 && return convert(typeof(float(x)), LambertW.Omega) # must be a more efficient way
end
return _lambertw(float(x), k, maxits)
end
Expand Down Expand Up @@ -141,54 +141,44 @@ function lambertw_root_finding(z::T, x0::T, maxits::Integer) where T <: Number
return x
end

### omega constant
### Lambert's Omega constant

const _omega_const = 0.567143290409783872999968662210355

# The BigFloat `omega_const_bf_` is set via a literal in the function __init__ to prevent a segfault

# compute omega constant via root finding
# We could compute higher precision. This converges very quickly.
function omega_const(::Type{BigFloat})
precision(BigFloat) <= 256 && return omega_const_bf_[]
# compute BigFloat Omega constant at arbitrary precision
function compute_lambertw_Omega()
oc = BigFloat("0.5671432904097838729999686622103555497538157871865125081351310792230457930866845666932194")
precision(oc) <= 256 && return oc
# iteratively improve the precision
# see https://en.wikipedia.org/wiki/Omega_constant#Computation
myeps = eps(BigFloat)
oc = omega_const_bf_[]
for i in 1:100
for _ in 1:1000
nextoc = (1 + oc) / (1 + exp(oc))
abs(oc - nextoc) <= myeps && break
abs(oc - nextoc) <= myeps && return oc
oc = nextoc
end
@warn "Omega precision is less than current BigFloat precision ($(precision(BigFloat)))"
return oc
end

"""
omega
ω
# "private" declaration of Omega constant
Base.@irrational lambertw_Omega 0.567143290409783872999968662210355 compute_lambertw_Omega()

The constant defined by `ω exp(ω) = 1`.
module LambertW

# Example
```jldoctest
julia> ω
ω = 0.5671432904097...
julia> omega
ω = 0.5671432904097...
"""
Lambert's Omega (*Ω*) constant.
julia> ω * exp(ω)
1.0
Lambert's *Ω* is the solution to *W(Ω) = 1* equation,
where *W(t) = t exp(t)* is the
[Lambert's *W* function](https://en.wikipedia.org/wiki/Lambert_W_function).
julia> big(omega)
5.67143290409783872999968662210355549753815787186512508135131079223045793086683e-01
```
# See also
* https://en.wikipedia.org/wiki/Omega_constant
* [`lambertw()`][@ref SpecialFunctions.lambertw]
"""
const ω = Irrational{:ω}()
@doc (@doc ω) omega = ω
const Ω = Irrational{:lambertw_Omega}()
const Omega = Irrational{:lambertw_Omega}() # ASCII alias

Base.Float64(::Irrational{:ω}) = _omega_const
Base.Float32(::Irrational{:ω}) = Float32(_omega_const)
Base.Float16(::Irrational{:ω}) = Float16(_omega_const)
Base.BigFloat(::Irrational{:ω}) = omega_const(BigFloat)
end

### Expansion about branch point x = -1/e

Expand Down
35 changes: 24 additions & 11 deletions test/lambertw.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@ using IrrationalConstants

# could return math const e, but this would break type stability
@test @inferred(lambertw(1)) isa AbstractFloat
@test @inferred(lambertw(1)) == float(LambertW.Omega)
@test @inferred(lambertw(big(1))) == big(LambertW.Omega)
@test @inferred(lambertw(MathConstants.e, 0)) == 1

## value at branch point where real branches meet
Expand Down Expand Up @@ -87,19 +89,30 @@ end
@test z W*exp(W) atol=BigFloat(10)^(-70)
end

### ω constant
@testset "LambertW.Omega" begin
@test isapprox(LambertW.Ω * exp(LambertW.Ω), 1)
@test LambertW.Omega === LambertW.Ω

## get ω from recursion and compare to value from lambertw
let sp = precision(BigFloat)
setprecision(512)
@test lambertw(big(1)) == big(SpecialFunctions.omega)
setprecision(sp)
end
# lower than default precision
setprecision(BigFloat, 196) do
o = big(LambertW.Ω)
@test precision(o) == 196
@test isapprox(o * exp(o), 1, atol=eps(BigFloat))

oalias = big(LambertW.Omega)
@test o == oalias
end

@test lambertw(1) == float(SpecialFunctions.omega)
@test convert(Float16, SpecialFunctions.omega) == convert(Float16, 0.5674)
@test convert(Float32, SpecialFunctions.omega) == 0.56714326f0
@test lambertw(BigInt(1)) == big(SpecialFunctions.omega)
# higher than default precision
setprecision(BigFloat, 2048) do
o = big(LambertW.Ω)
@test precision(o) == 2048
@test isapprox(o * exp(o), 1, atol=eps(BigFloat))

oalias = big(LambertW.Omega)
@test o == oalias
end
end

### expansion about branch point
@testset "lambertwbp()" begin
Expand Down

0 comments on commit d20cdb2

Please sign in to comment.