Skip to content

alexeyshmelev/Algorithms_and_Deep_Learning_theory

Repository files navigation

Useful links

Name Main Libs Level Source Comments Language
Machine Learning for Beginners: An Introduction to Neural Networks Numpy Beginner Internet --- ENG
Machine Learning Specialization Tensorflow, XGBoost Beginner Coursera --- ENG
Complete Guide to Adam Optimization --- --- TowardsDataScience --- ENG
MNIST digits classification with TensorFlow Tensorflow --- Medium --- ENG
Учебник по машинному обучению --- Beginner Yandex --- RUS
Tricking Neural Networks: Create your own Adversarial Examples --- Pro Medium Using noise to crack neural network ENG
Создание простой нейронной сети на Python NumPy, Scikit-learn, Matplotlib Beginner Medium --- ENG
Generative adversarial networks Tensorflow Medium Habr --- RUS
A Beginner's Guide to Generative Adversarial Networks (GANs) Tensorflow Medium Internet There are a lot of different papers in comment of this site ENG
GANs from Scratch 1: A deep introduction. With code in PyTorch and TensorFlow Pytorch Beginner (in GANs) Medium --- ENG
A Survey of Visual Attention Mechanisms in Deep Learning Only math Pro Medium --- ENG
Attention mechanism Only math Pro Medium --- ENG
Нейросеть — обучение без учителя. Метод Policy Gradient PyTorch Medium Habr Пример игры где ракетка пытается поймать кубики падающие сверху RUS
Neural Architecture Search (NAS): basic principles and different approaches Pytorch Pro+ Internet neural network intelligence (nni) package by Microsoft ENG
Reinforcement Learning Explained Visually (Part 4): Q Learning, step-by-step Only math Pro TowardsDataScience There are lots of parts in this article ENG
Backpropagation in a convolutional layer Only math Pro TowardsDataScience --- ENG
Introduction to 1D Convolutional Neural Networks in Keras for Time Sequences Tensorflow Beginner Internet Очень хорошо объяснено, как работает 1D Convolutional Layers ENG
Attention for time series forecasting and classification --- Medium Medium --- ENG
Transformers Explained Visually (Part 3): Multi-head Attention, deep dive --- Medium TowardsDataScience --- ENG
Why multi-head self attention works: math, intuitions and 10+1 hidden insights --- Pro Internet --- ENG

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published