forked from k2-fsa/sherpa-onnx
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Python API for speaker diarization. (k2-fsa#1400)
- Loading branch information
1 parent
57aae9c
commit 30092ea
Showing
14 changed files
with
315 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) 2024 Xiaomi Corporation | ||
|
||
""" | ||
This file shows how to use sherpa-onnx Python API for | ||
offline/non-streaming speaker diarization. | ||
Usage: | ||
Step 1: Download a speaker segmentation model | ||
Please visit https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-segmentation-models | ||
for a list of available models. The following is an example | ||
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-segmentation-models/sherpa-onnx-pyannote-segmentation-3-0.tar.bz2 | ||
tar xvf sherpa-onnx-pyannote-segmentation-3-0.tar.bz2 | ||
rm sherpa-onnx-pyannote-segmentation-3-0.tar.bz2 | ||
Step 2: Download a speaker embedding extractor model | ||
Please visit https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models | ||
for a list of available models. The following is an example | ||
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx | ||
Step 3. Download test wave files | ||
Please visit https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-segmentation-models | ||
for a list of available test wave files. The following is an example | ||
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-segmentation-models/0-four-speakers-zh.wav | ||
Step 4. Run it | ||
python3 ./python-api-examples/offline-speaker-diarization.py | ||
""" | ||
from pathlib import Path | ||
|
||
import sherpa_onnx | ||
import soundfile as sf | ||
|
||
|
||
def init_speaker_diarization(num_speakers: int = -1, cluster_threshold: float = 0.5): | ||
""" | ||
Args: | ||
num_speakers: | ||
If you know the actual number of speakers in the wave file, then please | ||
specify it. Otherwise, leave it to -1 | ||
cluster_threshold: | ||
If num_speakers is -1, then this threshold is used for clustering. | ||
A smaller cluster_threshold leads to more clusters, i.e., more speakers. | ||
A larger cluster_threshold leads to fewer clusters, i.e., fewer speakers. | ||
""" | ||
segmentation_model = "./sherpa-onnx-pyannote-segmentation-3-0/model.onnx" | ||
embedding_extractor_model = ( | ||
"./3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx" | ||
) | ||
|
||
config = sherpa_onnx.OfflineSpeakerDiarizationConfig( | ||
segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig( | ||
pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig( | ||
model=segmentation_model | ||
), | ||
), | ||
embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig( | ||
model=embedding_extractor_model | ||
), | ||
clustering=sherpa_onnx.FastClusteringConfig( | ||
num_clusters=num_speakers, threshold=cluster_threshold | ||
), | ||
min_duration_on=0.3, | ||
min_duration_off=0.5, | ||
) | ||
if not config.validate(): | ||
raise RuntimeError( | ||
"Please check your config and make sure all required files exist" | ||
) | ||
|
||
return sherpa_onnx.OfflineSpeakerDiarization(config) | ||
|
||
|
||
def progress_callback(num_processed_chunk: int, num_total_chunks: int) -> int: | ||
progress = num_processed_chunk / num_total_chunks * 100 | ||
print(f"Progress: {progress:.3f}%") | ||
return 0 | ||
|
||
|
||
def main(): | ||
wave_filename = "./0-four-speakers-zh.wav" | ||
if not Path(wave_filename).is_file(): | ||
raise RuntimeError(f"{wave_filename} does not exist") | ||
|
||
audio, sample_rate = sf.read(wave_filename, dtype="float32", always_2d=True) | ||
audio = audio[:, 0] # only use the first channel | ||
|
||
# Since we know there are 4 speakers in the above test wave file, we use | ||
# num_speakers 4 here | ||
sd = init_speaker_diarization(num_speakers=4) | ||
if sample_rate != sd.sample_rate: | ||
raise RuntimeError( | ||
f"Expected samples rate: {sd.sample_rate}, given: {sample_rate}" | ||
) | ||
|
||
show_porgress = True | ||
|
||
if show_porgress: | ||
result = sd.process(audio, callback=progress_callback).sort_by_start_time() | ||
else: | ||
result = sd.process(audio).sort_by_start_time() | ||
|
||
for r in result: | ||
print(f"{r.start:.3f} -- {r.end:.3f} speaker_{r.speaker:02}") | ||
# print(r) # this one is simpler | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
32 changes: 32 additions & 0 deletions
32
sherpa-onnx/python/csrc/offline-speaker-diarization-result.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
// sherpa-onnx/python/csrc/offline-speaker-diarization-result.cc | ||
// | ||
// Copyright (c) 2024 Xiaomi Corporation | ||
|
||
#include "sherpa-onnx/python/csrc/offline-speaker-diarization-result.h" | ||
|
||
#include "sherpa-onnx/csrc/offline-speaker-diarization-result.h" | ||
|
||
namespace sherpa_onnx { | ||
|
||
static void PybindOfflineSpeakerDiarizationSegment(py::module *m) { | ||
using PyClass = OfflineSpeakerDiarizationSegment; | ||
py::class_<PyClass>(*m, "OfflineSpeakerDiarizationSegment") | ||
.def_property_readonly("start", &PyClass::Start) | ||
.def_property_readonly("end", &PyClass::End) | ||
.def_property_readonly("duration", &PyClass::Duration) | ||
.def_property_readonly("speaker", &PyClass::Speaker) | ||
.def_property("text", &PyClass::Text, &PyClass::SetText) | ||
.def("__str__", &PyClass::ToString); | ||
} | ||
|
||
void PybindOfflineSpeakerDiarizationResult(py::module *m) { | ||
PybindOfflineSpeakerDiarizationSegment(m); | ||
using PyClass = OfflineSpeakerDiarizationResult; | ||
py::class_<PyClass>(*m, "OfflineSpeakerDiarizationResult") | ||
.def_property_readonly("num_speakers", &PyClass::NumSpeakers) | ||
.def_property_readonly("num_segments", &PyClass::NumSegments) | ||
.def("sort_by_start_time", &PyClass::SortByStartTime) | ||
.def("sort_by_speaker", &PyClass::SortBySpeaker); | ||
} | ||
|
||
} // namespace sherpa_onnx |
16 changes: 16 additions & 0 deletions
16
sherpa-onnx/python/csrc/offline-speaker-diarization-result.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
// sherpa-onnx/python/csrc/offline-speaker-diarization-result.h | ||
// | ||
// Copyright (c) 2024 Xiaomi Corporation | ||
|
||
#ifndef SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SPEAKER_DIARIZATION_RESULT_H_ | ||
#define SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SPEAKER_DIARIZATION_RESULT_H_ | ||
|
||
#include "sherpa-onnx/python/csrc/sherpa-onnx.h" | ||
|
||
namespace sherpa_onnx { | ||
|
||
void PybindOfflineSpeakerDiarizationResult(py::module *m); | ||
|
||
} | ||
|
||
#endif // SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SPEAKER_DIARIZATION_RESULT_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
// sherpa-onnx/python/csrc/offline-speaker-diarization.cc | ||
// | ||
// Copyright (c) 2024 Xiaomi Corporation | ||
|
||
#include "sherpa-onnx/python/csrc/offline-speaker-diarization.h" | ||
|
||
#include <string> | ||
#include <vector> | ||
|
||
#include "sherpa-onnx/csrc/offline-speaker-diarization.h" | ||
#include "sherpa-onnx/csrc/offline-speaker-segmentation-model-config.h" | ||
#include "sherpa-onnx/csrc/offline-speaker-segmentation-pyannote-model-config.h" | ||
|
||
namespace sherpa_onnx { | ||
|
||
static void PybindOfflineSpeakerSegmentationPyannoteModelConfig(py::module *m) { | ||
using PyClass = OfflineSpeakerSegmentationPyannoteModelConfig; | ||
py::class_<PyClass>(*m, "OfflineSpeakerSegmentationPyannoteModelConfig") | ||
.def(py::init<>()) | ||
.def(py::init<const std::string &>(), py::arg("model")) | ||
.def_readwrite("model", &PyClass::model) | ||
.def("__str__", &PyClass::ToString) | ||
.def("validate", &PyClass::Validate); | ||
} | ||
|
||
static void PybindOfflineSpeakerSegmentationModelConfig(py::module *m) { | ||
PybindOfflineSpeakerSegmentationPyannoteModelConfig(m); | ||
|
||
using PyClass = OfflineSpeakerSegmentationModelConfig; | ||
py::class_<PyClass>(*m, "OfflineSpeakerSegmentationModelConfig") | ||
.def(py::init<>()) | ||
.def(py::init<const OfflineSpeakerSegmentationPyannoteModelConfig &, | ||
int32_t, bool, const std::string &>(), | ||
py::arg("pyannote"), py::arg("num_threads") = 1, | ||
py::arg("debug") = false, py::arg("provider") = "cpu") | ||
.def_readwrite("pyannote", &PyClass::pyannote) | ||
.def_readwrite("num_threads", &PyClass::num_threads) | ||
.def_readwrite("debug", &PyClass::debug) | ||
.def_readwrite("provider", &PyClass::provider) | ||
.def("__str__", &PyClass::ToString) | ||
.def("validate", &PyClass::Validate); | ||
} | ||
|
||
static void PybindOfflineSpeakerDiarizationConfig(py::module *m) { | ||
PybindOfflineSpeakerSegmentationModelConfig(m); | ||
|
||
using PyClass = OfflineSpeakerDiarizationConfig; | ||
py::class_<PyClass>(*m, "OfflineSpeakerDiarizationConfig") | ||
.def(py::init<const OfflineSpeakerSegmentationModelConfig &, | ||
const SpeakerEmbeddingExtractorConfig &, | ||
const FastClusteringConfig &, float, float>(), | ||
py::arg("segmentation"), py::arg("embedding"), py::arg("clustering"), | ||
py::arg("min_duration_on") = 0.3, py::arg("min_duration_off") = 0.5) | ||
.def_readwrite("segmentation", &PyClass::segmentation) | ||
.def_readwrite("embedding", &PyClass::embedding) | ||
.def_readwrite("clustering", &PyClass::clustering) | ||
.def_readwrite("min_duration_on", &PyClass::min_duration_on) | ||
.def_readwrite("min_duration_off", &PyClass::min_duration_off) | ||
.def("__str__", &PyClass::ToString) | ||
.def("validate", &PyClass::Validate); | ||
} | ||
|
||
void PybindOfflineSpeakerDiarization(py::module *m) { | ||
PybindOfflineSpeakerDiarizationConfig(m); | ||
|
||
using PyClass = OfflineSpeakerDiarization; | ||
py::class_<PyClass>(*m, "OfflineSpeakerDiarization") | ||
.def(py::init<const OfflineSpeakerDiarizationConfig &>(), | ||
py::arg("config")) | ||
.def_property_readonly("sample_rate", &PyClass::SampleRate) | ||
.def( | ||
"process", | ||
[](const PyClass &self, const std::vector<float> samples, | ||
std::function<int32_t(int32_t, int32_t)> callback) { | ||
if (!callback) { | ||
return self.Process(samples.data(), samples.size()); | ||
} | ||
|
||
std::function<int32_t(int32_t, int32_t, void *)> callback_wrapper = | ||
[callback](int32_t processed_chunks, int32_t num_chunks, | ||
void *) -> int32_t { | ||
callback(processed_chunks, num_chunks); | ||
return 0; | ||
}; | ||
|
||
return self.Process(samples.data(), samples.size(), | ||
callback_wrapper); | ||
}, | ||
py::arg("samples"), py::arg("callback") = py::none()); | ||
} | ||
|
||
} // namespace sherpa_onnx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
// sherpa-onnx/python/csrc/offline-speaker-diarization.h | ||
// | ||
// Copyright (c) 2024 Xiaomi Corporation | ||
|
||
#ifndef SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SPEAKER_DIARIZATION_H_ | ||
#define SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SPEAKER_DIARIZATION_H_ | ||
|
||
#include "sherpa-onnx/python/csrc/sherpa-onnx.h" | ||
|
||
namespace sherpa_onnx { | ||
|
||
void PybindOfflineSpeakerDiarization(py::module *m); | ||
|
||
} | ||
|
||
#endif // SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SPEAKER_DIARIZATION_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.