-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #113 from UoA-CARES/revert-112-dev/update_sac_to_t…
…he_paper Revert "Dev/update sac to the paper"
- Loading branch information
Showing
5 changed files
with
37 additions
and
149 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,145 +1,49 @@ | ||
|
||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torch.nn.functional as F | ||
from torch.distributions import Normal | ||
from torch import distributions as pyd | ||
import math | ||
|
||
|
||
# class Actor(nn.Module): | ||
# def __init__(self, observation_size, num_actions): | ||
# super(Actor, self).__init__() | ||
# | ||
# self.hidden_size = [1024, 1024] | ||
# self.log_sig_min = -20 | ||
# self.log_sig_max = 2 | ||
# | ||
# self.h_linear_1 = nn.Linear(in_features=observation_size, out_features=self.hidden_size[0]) | ||
# self.h_linear_2 = nn.Linear(in_features=self.hidden_size[0], out_features=self.hidden_size[1]) | ||
# | ||
# self.mean_linear = nn.Linear(in_features=self.hidden_size[1], out_features=num_actions) | ||
# self.log_std_linear = nn.Linear(in_features=self.hidden_size[1], out_features=num_actions) | ||
# | ||
# def forward(self, state): | ||
# x = F.relu(self.h_linear_1(state)) | ||
# x = F.relu(self.h_linear_2(x)) | ||
# | ||
# mean = self.mean_linear(x) | ||
# log_std = self.log_std_linear(x) | ||
# log_std = torch.clamp(log_std, min=self.log_sig_min, max=self.log_sig_max) | ||
# | ||
# return mean, log_std | ||
# | ||
# def sample(self, state): | ||
# mean, log_std = self.forward(state) | ||
# std = log_std.exp() | ||
# normal = Normal(mean, std) | ||
# | ||
# x_t = normal.rsample() # for re-parameterization trick (mean + std * N(0,1)) | ||
# y_t = torch.tanh(x_t) | ||
# action = y_t | ||
# | ||
# epsilon = 1e-6 | ||
# log_prob = normal.log_prob(x_t) | ||
# log_prob -= torch.log((1 - y_t.pow(2)) + epsilon) | ||
# log_prob = log_prob.sum(1, keepdim=True) | ||
# mean = torch.tanh(mean) | ||
# | ||
# return action, log_prob, mean | ||
|
||
|
||
class TanhTransform(pyd.transforms.Transform): | ||
r""" | ||
Transform via the mapping :math:`y = \tanh(x)`. | ||
It is equivalent to | ||
``` | ||
ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)]) | ||
``` | ||
However this might not be numerically stable, thus it is recommended to use `TanhTransform` | ||
instead. | ||
Note that one should use `cache_size=1` when it comes to `NaN/Inf` values. | ||
""" | ||
domain = pyd.constraints.real | ||
codomain = pyd.constraints.interval(-1.0, 1.0) | ||
bijective = True | ||
sign = +1 | ||
|
||
def __init__(self, cache_size=1): | ||
super().__init__(cache_size=cache_size) | ||
|
||
@staticmethod | ||
def atanh(x): | ||
return 0.5 * (x.log1p() - (-x).log1p()) | ||
|
||
def __eq__(self, other): | ||
return isinstance(other, TanhTransform) | ||
|
||
def _call(self, x): | ||
return x.tanh() | ||
|
||
def _inverse(self, y): | ||
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms. | ||
# one should use `cache_size=1` instead | ||
return self.atanh(y) | ||
|
||
def log_abs_det_jacobian(self, x, y): | ||
# This function is often used to compute the log | ||
# We use a formula that is more numerically stable, see details in the following link | ||
# https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7 | ||
return 2. * (math.log(2.) - x - F.softplus(-2. * x)) | ||
|
||
class Actor(nn.Module): | ||
def __init__(self, observation_size, num_actions): | ||
super(Actor, self).__init__() | ||
|
||
class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): | ||
def __init__(self, loc, scale): | ||
self.loc = loc | ||
self.scale = scale | ||
self.base_dist = pyd.Normal(loc, scale) | ||
# a = tanh(u) | ||
transforms = [TanhTransform()] | ||
super().__init__(self.base_dist, transforms, validate_args=False) | ||
self.hidden_size = [1024, 1024] | ||
self.log_sig_min = -20 | ||
self.log_sig_max = 2 | ||
|
||
@property | ||
def mean(self): | ||
mu = self.loc | ||
for tr in self.transforms: | ||
mu = tr(mu) | ||
return mu | ||
self.h_linear_1 = nn.Linear(in_features=observation_size, out_features=self.hidden_size[0]) | ||
self.h_linear_2 = nn.Linear(in_features=self.hidden_size[0], out_features=self.hidden_size[1]) | ||
|
||
self.mean_linear = nn.Linear(in_features=self.hidden_size[1], out_features=num_actions) | ||
self.log_std_linear = nn.Linear(in_features=self.hidden_size[1], out_features=num_actions) | ||
|
||
class Actor(nn.Module): | ||
# DiagGaussianActor | ||
"""torch.distributions implementation of an diagonal Gaussian policy.""" | ||
def __init__(self, state_dim, action_dim): | ||
super().__init__() | ||
self.hidden_size = [256, 256] | ||
self.log_std_bounds = [-20, 2] | ||
# Two hidden layers, 256 on each | ||
self.linear1 = nn.Linear(state_dim, self.hidden_size[0]) | ||
self.linear2 = nn.Linear(self.hidden_size[0], self.hidden_size[1]) | ||
self.mean_linear = nn.Linear(self.hidden_size[1], action_dim) | ||
self.log_std_linear = nn.Linear(self.hidden_size[1], action_dim) | ||
# self.apply(weight_init) | ||
def forward(self, state): | ||
x = F.relu(self.h_linear_1(state)) | ||
x = F.relu(self.h_linear_2(x)) | ||
|
||
def sample(self, obs): | ||
x = F.relu(self.linear1(obs)) | ||
x = F.relu(self.linear2(x)) | ||
mu = self.mean_linear(x) | ||
mean = self.mean_linear(x) | ||
log_std = self.log_std_linear(x) | ||
log_std = torch.clamp(log_std, min=self.log_sig_min, max=self.log_sig_max) | ||
|
||
# Bound the action to finite interval. | ||
# Apply an invertible squashing function: tanh | ||
# employ the change of variables formula to compute the likelihoods of the bounded actions | ||
|
||
# constrain log_std inside [log_std_min, log_std_max] | ||
log_std = torch.tanh(log_std) | ||
return mean, log_std | ||
|
||
log_std_min, log_std_max = self.log_std_bounds | ||
log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) | ||
def sample(self, state): | ||
mean, log_std = self.forward(state) | ||
std = log_std.exp() | ||
normal = Normal(mean, std) | ||
|
||
std = log_std.exp() | ||
x_t = normal.rsample() # for re-parameterization trick (mean + std * N(0,1)) | ||
y_t = torch.tanh(x_t) | ||
action = y_t | ||
|
||
dist = SquashedNormal(mu, std) | ||
sample = dist.rsample() | ||
log_pi = dist.log_prob(sample).sum(-1, keepdim=True) | ||
epsilon = 1e-6 | ||
log_prob = normal.log_prob(x_t) | ||
log_prob -= torch.log((1 - y_t.pow(2)) + epsilon) | ||
log_prob = log_prob.sum(1, keepdim=True) | ||
mean = torch.tanh(mean) | ||
|
||
return sample, log_pi, dist.mean | ||
return action, log_prob, mean |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.