Skip to content

Commit

Permalink
docs
Browse files Browse the repository at this point in the history
  • Loading branch information
hakanardo committed Dec 20, 2024
1 parent 9cbc602 commit 786a45e
Showing 1 changed file with 18 additions and 3 deletions.
21 changes: 18 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
# Spiideo SoccerNet SynLoc
## Single Frame World Coordinate Athlete Detection and Localization with Synthetic Data

[[Paper](https://arxiv.org/)] [[Baseline](https://github.com/Spiideo/mmpose/tree/spiideo_scenes)] [[Devkit](https://github.com/Spiideo/sskit)]
[[Paper](https://arxiv.org/)] [[Baseline](https://github.com/Spiideo/mmpose/tree/spiideo_scenes)] [[Devkit](https://github.com/Spiideo/sskit)][[Data Download](https://research.spiideo.com/)]

</div>

Expand Down Expand Up @@ -32,6 +32,21 @@ It is also possible to build manually:
python setup.py install
```

## Data Download
The Spiideo SoccerNet SynLoc data can be downloaded from [research.spiideo.com](https://research.spiideo.com/) after registering. Unpack the .zip files in `data/SoccerNet/SpiideoSynLoc`. To automate the download, the [`SoccerNet`](https://pypi.org/project/SoccerNet/) pypi package can be used:

```python
from SoccerNet.Downloader import SoccerNetDownloader
mySoccerNetDownloader=SoccerNetDownloader(LocalDirectory="data/SoccerNet")
mySoccerNetDownloader.downloadDataTask(task="SpiideoSynLoc", split=["train","valid","test","challenge"])
```

This will download full resolution 4K images. To instead download the smaller fullhd versions, use:

```python
mySoccerNetDownloader.downloadDataTask(task="SpiideoSynLoc", split=["train","valid","test","challenge"], version="fullhd")
```

## mAP-LocSim Evaluation

Tools for evaluating a solution using the proposed mAP-LocSim metrics can be found in `sskit.coco`. It's an adaption of
Expand All @@ -46,7 +61,7 @@ results on the validation set stored in `validation_results.json`, use:
from xtcocotools.coco import COCO
from sskit.coco import LocSimCOCOeval

coco = COCO('data/annotations/val.json')
coco = COCO('data/SoccerNet/SpiideoSynLoc/annotations/val.json')
coco_det = coco.loadRes("validation_results.json")
coco_eval = LocSimCOCOeval(coco, coco_det, 'bbox', [0.089, 0.089], True)
coco_eval.params.useSegm = None
Expand All @@ -65,7 +80,7 @@ To get unbiased scores on the test-set, the score threshold found for the valida
from xtcocotools.coco import COCO
from sskit.coco import LocSimCOCOeval

coco = COCO('data/annotations/test.json')
coco = COCO('data/SoccerNet/SpiideoSynLoc/annotations/test.json')
coco_det = coco.loadRes("test_results.json")
coco_eval = LocSimCOCOeval(coco, coco_det, 'bbox', [0.089, 0.089], True)
coco_eval.params.useSegm = None
Expand Down

0 comments on commit 786a45e

Please sign in to comment.