Skip to content

Commit

Permalink
Merge pull request #828 from abhro/patch-1
Browse files Browse the repository at this point in the history
Minor docstring fixes
  • Loading branch information
ChrisRackauckas authored Oct 25, 2024
2 parents 05d0013 + 5107a82 commit c8b6074
Showing 1 changed file with 31 additions and 25 deletions.
56 changes: 31 additions & 25 deletions src/scimlfunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -478,8 +478,8 @@ the usage of the `SplitFunction`. These include:
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f_1(u,p,t)}{\partial t}``
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df_1}{du}``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df_1}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df_1}{du}^\ast v``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df_1}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df_1}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -563,8 +563,10 @@ M \frac{du}{dt} = f(u,p,t)
as a partitioned ODE:
```math
M_1 \frac{du}{dt} = f_1(u,p,t)
\begin{align}
M_1 \frac{du}{dt} = f_1(u,p,t) \\
M_2 \frac{du}{dt} = f_2(u,p,t)
\end{align}
```
and all of its related functions, such as the Jacobian of `f`, its gradient
Expand Down Expand Up @@ -598,16 +600,16 @@ the usage of `f`. These include:
- `mass_matrix`: the mass matrix `M_i` represented in the ODE function. Can be used
to determine that the equation is actually a differential-algebraic equation (DAE)
if `M` is singular. Note that in this case special solvers are required, see the
DAE solver page for more details: https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/.
DAE solver page for more details: <https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/>.
Must be an AbstractArray or an AbstractSciMLOperator. Should be given as a tuple
of mass matrices, i.e. `(M_1, M_2)` for the mass matrices of equations 1 and 2
respectively.
- `analytic(u0,p,t)`: used to pass an analytical solution function for the analytical
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -707,8 +709,8 @@ the usage of `f`. These include:
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -767,8 +769,10 @@ M \frac{du}{dt} = f(u,h,p,t)
as a partitioned ODE:
```math
M_1 \frac{du}{dt} = f_1(u,h,p,t)
\begin{align}
M_1 \frac{du}{dt} = f_1(u,h,p,t) \\
M_2 \frac{du}{dt} = f_2(u,h,p,t)
\end{align}
```
and all of its related functions, such as the Jacobian of `f`, its gradient
Expand Down Expand Up @@ -812,8 +816,8 @@ the usage of `f`. These include:
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,h,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
- `jac(J,u,h,p,t)` or `J=jac(u,h,p,t)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -1022,8 +1026,8 @@ the usage of `f`. These include:
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `ggprime(J,u,p,t)` or `J = ggprime(u,p,t)`: returns the Milstein derivative
``\frac{dg(u,p,t)}{du} g(u,p,t)``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
Expand Down Expand Up @@ -1193,8 +1197,10 @@ M du = f(u,p,t) dt + g(u,p,t) dW_t
as a partitioned ODE:
```math
M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t
\begin{align}
M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t \\
M_2 du = f_2(u,p,t) dt + g(u,p,t) dW_t
\end{align}
```
and all of its related functions, such as the Jacobian of `f`, its gradient
Expand Down Expand Up @@ -1349,8 +1355,8 @@ the usage of `f`. These include:
with the corresponding expected solution at `sol.W.t` or `sol.t`.
- `tgrad(dT,u,p,t,W)` or dT=tgrad(u,p,t,W): returns ``\frac{\partial f(u,p,t,W)}{\partial t}``
- `jac(J,u,p,t,W)` or `J=jac(u,p,t,W)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -1592,8 +1598,8 @@ the usage of `f`. These include:
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -1684,8 +1690,8 @@ the usage of `f`. These include:
- `analytic(u0,p)`: used to pass an analytical solution function for the analytical
solution of the ODE. Generally only used for testing and development of the solvers.
- `jac(J,u,p)` or `J=jac(u,p)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -2036,11 +2042,11 @@ the usage of `f` and `bc`. These include:
solution of the BVP. Generally only used for testing and development of the solvers.
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
- `jac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\frac{df}{du}``
- `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: erturns ``\frac{dbc}{du}``
- `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\frac{dbc}{du}``
- `jvp(Jv,v,du,u,p,gamma,t)` or `Jv=jvp(v,du,u,p,gamma,t)`: returns the directional
derivative``\frac{df}{du} v``
derivative ``\frac{df}{du} v``
- `vjp(Jv,v,du,u,p,gamma,t)` or `Jv=vjp(v,du,u,p,gamma,t)`: returns the adjoint
derivative``\frac{df}{du}^\ast v``
derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down Expand Up @@ -2162,8 +2168,8 @@ the usage of `f`. These include:
solution of the ODE. Generally only used for testing and development of the solvers.
- `tgrad(dT,du,u,p,t)` or dT=tgrad(du,u,p,t): returns ``\frac{\partial f(du,u,p,t)}{\partial t}``
- `jac(J,du,u,p,t)` or `J=jac(du,u,p,t)`: returns ``\frac{df}{du}``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
as the prototype and integrators will specialize on this structure where possible. Non-structured
Expand Down

0 comments on commit c8b6074

Please sign in to comment.