forked from Dao-AILab/flash-attention
-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add benchmark script * fix bugs * fix a bug * add output csv
- Loading branch information
Showing
1 changed file
with
128 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# Install the newest triton version with | ||
# pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python" | ||
import argparse | ||
import math | ||
import torch | ||
import csv | ||
|
||
import os | ||
from datetime import date | ||
import subprocess | ||
|
||
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward | ||
from flash_attn import flash_attn_qkvpacked_func, flash_attn_varlen_qkvpacked_func | ||
|
||
|
||
def benchmark_row(row): | ||
dtype = row["dtype"] | ||
if dtype in ["torch.float16"]: | ||
dtype = torch.float16 | ||
elif dtype in ["torch.bfloat16"]: | ||
dtype = torch.bfloat16 | ||
else: | ||
raise ValueError("Wrong data type") | ||
batch_size = row["batch size"] | ||
nheads = int(row["nheads"]) | ||
d = int(row["embedding dim"]) | ||
seqlen = int(row["seqlen"]) | ||
causal = row["causal"] == 'TRUE' | ||
dropout_p = float(row["dropout"]) | ||
|
||
torch.manual_seed(0) | ||
|
||
if not batch_size.isdigit(): | ||
print(dtype, batch_size, seqlen, nheads, d, causal, dropout_p) | ||
cu_seqlens = [int(b) for b in batch_size.split(',')] | ||
max_seqlen = 0 | ||
for cu_seq1, cu_seq2 in zip(cu_seqlens[1:], cu_seqlens[:-1]): | ||
max_seqlen = max(max_seqlen, cu_seq1 - cu_seq2) | ||
qkv = torch.randn(seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True) | ||
fn = lambda qkv: flash_attn_varlen_qkvpacked_func( | ||
qkv, torch.tensor(cu_seqlens, dtype=torch.int32).cuda(), max_seqlen, dropout_p, causal=causal, softmax_scale=1/math.sqrt(d) | ||
) | ||
else: | ||
print(dtype, batch_size, seqlen, nheads, d, causal, dropout_p) | ||
batch_size = int(batch_size) | ||
qkv = torch.randn(batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True) | ||
fn = lambda qkv: flash_attn_qkvpacked_func( | ||
qkv, dropout_p, causal=causal, softmax_scale=1/math.sqrt(d) | ||
) | ||
|
||
_, m1 = benchmark_forward(fn, qkv, amp_dtype=dtype, repeats=repeats, verbose=False, desc='FlashAttention') | ||
_, m2 = benchmark_backward(fn, qkv, amp_dtype=dtype, repeats=repeats, verbose=False, desc='FlashAttention') | ||
|
||
fwd_time = m1.mean | ||
bwd_time = m2.mean | ||
if isinstance(batch_size, str): | ||
batch_size = 1 | ||
fwd_tflops = efficiency(flops(batch_size, seqlen, d, nheads, causal, mode="fwd"), fwd_time) | ||
bwd_tflops = efficiency(flops(batch_size, seqlen, d, nheads, causal, mode="bwd"), bwd_time) | ||
fwd_bwd_tflops = efficiency(flops(batch_size, seqlen, d, nheads, causal, mode="fwd_bwd"), fwd_time+bwd_time) | ||
return [dtype, batch_size, nheads, d, seqlen, causal, dropout_p, format(fwd_time*1000, ".2f"), format(bwd_time*1000, ".2f"), format(fwd_tflops, ".2f"), format(bwd_tflops, ".2f"), format(fwd_bwd_tflops, ".2f")] | ||
|
||
|
||
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"): | ||
assert mode in ["fwd", "bwd", "fwd_bwd"] | ||
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) | ||
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) | ||
|
||
|
||
def efficiency(flop, time): | ||
return (flop / time / 10**12) if not math.isnan(time) else 0.0 | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description="Benchmark flash attention.") | ||
|
||
parser.add_argument("--repeats", | ||
type=int, | ||
default=30) | ||
parser.add_argument("--output_format", | ||
type=str, | ||
default='csv', | ||
choices=['csv', 'xls'], | ||
help="Export file format") | ||
parser.add_argument("--input_csv", | ||
type=str, | ||
required=True, | ||
help="Input csv path") | ||
parser.add_argument("--output_csv", | ||
type=str, | ||
required=True, | ||
help="Output csv path") | ||
|
||
args = parser.parse_args() | ||
|
||
fa_commit = subprocess.run("git rev-parse HEAD", shell=True, capture_output=True).stdout.strip().decode('UTF-8') | ||
submodule = subprocess.run("git submodule foreach", shell=True, capture_output=True).stdout.strip().decode('UTF-8') | ||
ck_path = submodule.split(' ')[1][1:-1] | ||
ck_commit = subprocess.run(f"cd {ck_path} && git rev-parse HEAD", shell=True, capture_output=True).stdout.strip().decode('UTF-8') | ||
|
||
datetime = date.today() | ||
labels = ["dtype", "batch size", "seqlen", "nheads", "embedding dim", "causal", "dropout", "fwd(ms)", "bwd(ms)", "fwd(tflops)", "bwd(tflops)", "fwd+bwd(tflops)"] | ||
device = 'cuda' | ||
|
||
repeats = args.repeats | ||
with open(args.input_csv, newline='') as input_csv: | ||
csvreader = csv.DictReader(input_csv) | ||
if args.output_format == 'xls': | ||
import xlwt | ||
workbook = xlwt.Workbook(encoding = 'utf-8') | ||
worksheet = workbook.add_sheet('flash attention') | ||
|
||
for i, label in enumerate(labels): | ||
worksheet.write(0, i, label) | ||
|
||
i = 1 | ||
for row in csvreader: | ||
output_row = benchmark_row(row) | ||
for j, value in enumerate(output_row): | ||
worksheet.write(i, j, str(value)) | ||
i += 1 | ||
|
||
workbook.save(args.output_csv) | ||
else: | ||
with open(args.output_csv, 'w', newline='') as output_csv: | ||
output_csv = csv.writer(output_csv, delimiter=',') | ||
output_csv.writerow(labels) | ||
output_csv.writerows([benchmark_row(row) for row in csvreader]) |