Skip to content

Commit

Permalink
doc: added IHT to twist tutorial
Browse files Browse the repository at this point in the history
  • Loading branch information
mrava87 committed Dec 18, 2023
1 parent 6fb31e3 commit 2d129fb
Showing 1 changed file with 58 additions and 16 deletions.
74 changes: 58 additions & 16 deletions tutorials/twist.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,26 @@
r"""
ISTA, FISTA, and TWIST for Compressive sensing
==============================================
IHT, ISTA, FISTA, and TWIST for Compressive sensing
===================================================
In this example we want to compare three popular solvers in compressive
sensing problem, namely :py:class:`pylops.optimization.sparsity.ista`,
:py:class:`pylops.optimization.sparsity.fista`, and
:py:class:`pyproximal.optimization.primal.TwIST`.
In this example we want to compare four popular solvers in compressive
sensing problem, namely IHT, ISTA, FISTA, and TwIST. The first three can
be implemented using the same solver, namely the
:py:class:`pyproximal.optimization.primal.ProximalGradient`, whilst the latter
is implemented in :py:class:`pyproximal.optimization.primal.TwIST`.
Whilst all solvers try to solve an unconstrained problem with a L1
The IHT solver tries to solve the following unconstrained problem with a L0Ball
regularization term:
.. math::
J = \|\mathbf{d} - \mathbf{Op} \mathbf{x}\|_2 \; s.t. \; \|\mathbf{x}\|_0 \le K
The other solvers try instead to solve an unconstrained problem with a L1
regularization term:
.. math::
J = \|\mathbf{d} - \mathbf{Op} \mathbf{x}\|_2 + \epsilon \|\mathbf{x}\|_1
their convergence speed is different, which is something we want to focus in
however their convergence speed is different, which is something we want to focus in
this tutorial.
"""
Expand All @@ -27,6 +34,9 @@
plt.close('all')
np.random.seed(0)

def callback(x, pf, pg, eps, cost):
cost.append(pf(x) + eps * pg(x))

###############################################################################
# Let's start by creating a dense mixing matrix and a sparse signal.
# Note that the mixing matrix leads to an underdetermined system of equations
Expand All @@ -45,19 +55,38 @@
y = Aop * x

###############################################################################
# We try now to recover the sparse signal with our 3 different solvers
eps = 1e-2
# We try now to recover the sparse signal with our 4 different solvers
L = np.abs((Aop.H * Aop).eigs(1)[0])
tau = 0.95 / L
eps = 5e-3
maxit = 100

# IHT
l0 = pyproximal.proximal.L0Ball(3)
l2 = pyproximal.proximal.L2(Op=Aop, b=y)
costf1 = []
x_iht = pyproximal.optimization.primal.ProximalGradient(l2, l0, tau=tau, x0=np.zeros(M),
epsg=eps, niter=maxit, acceleration='fista', show=False)

# ISTA
x_ista, niteri, costi = \
pylops.optimization.sparsity.ista(Aop, y, niter=maxit, eps=eps, tol=1e-10,
show=False)
l1 = pyproximal.proximal.L1()
l2 = pyproximal.proximal.L2(Op=Aop, b=y)
costi = []
x_ista = \
pyproximal.optimization.primal.ProximalGradient(l2, l1, tau=tau, x0=np.zeros(M),
epsg=eps, niter=maxit, show=False,
callback=lambda x: callback(x, l2, l1, eps, costi))
niteri = len(costi)

# FISTA
x_fista, niterf, costf = \
pylops.optimization.sparsity.fista(Aop, y, niter=maxit, eps=eps,
tol=1e-10, show=False)
l1 = pyproximal.proximal.L1()
l2 = pyproximal.proximal.L2(Op=Aop, b=y)
costf = []
x_fista = \
pyproximal.optimization.primal.ProximalGradient(l2, l1, tau=tau, x0=np.zeros(M),
epsg=eps, niter=maxit, acceleration='fista', show=False,
callback=lambda x: callback(x, l2, l1, eps, costf))
niterf = len(costf)

# TWIST (Note that since the smallest eigenvalue is zero, we arbitrarily
# choose a small value for the solver to converge stably)
Expand All @@ -73,6 +102,9 @@
m, s, b = ax.stem(x, linefmt='k', basefmt='k',
markerfmt='ko', label='True')
plt.setp(m, markersize=10)
m, s, b = ax.stem(x_iht, linefmt='--c', basefmt='--c',
markerfmt='co', label='IHT')
plt.setp(m, markersize=10)
m, s, b = ax.stem(x_ista, linefmt='--r', basefmt='--r',
markerfmt='ro', label='ISTA')
plt.setp(m, markersize=7)
Expand All @@ -95,3 +127,13 @@
ax.legend()
ax.grid(True, which='both')
plt.tight_layout()

###############################################################################
# To conclude, given the nature of the problem (small number of non-zero coefficients),
# the IHT solver shows the fastest convergence - note that we do not display the
# cost function since this is a constrained problem. This is however greatly influenced
# by the fact that we assume exact knowledge of the number of non-zero coefficients.
# When this information is not available, IHT may become suboptimal. In this case the
# FISTA solver should always be preferred (over ISTA) and TwIST represents an
# alternative worth checking.

0 comments on commit 2d129fb

Please sign in to comment.