Skip to content

Muckthebuck/2023-Energy-kit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Installation

Download Conda.

setup conda path in .vscode/settings.json

change the following lines if conda isnt recognised "python.defaultInterpreterPath": "C:\user\anaconda3\python.exe", // here "python.condaPath": "C:\user\anaconda3\Scripts\conda.exe" // here

Run conda env create -f SOML.yaml at root folder.

File structure

directories

/data: has source and cleaned data /alpg-master: code used to generate synthetic load data /diagrams: some of the graphs and diagrams used in reports /graphs: some of the graphs generated during exploration process /saved_model: saved trained ml models

python classes

  • ml_models.py : loads pre-trained ml models and performs online training
  • online_batches.py : loads pre-made sliding window batches (for ease of use in ml_model.py)

jupyter notebooks

main jupyter notebook to run the project

  • optimization.ipynb : Main notebook with optimization, MPC simulation, and printing of the graphs

Optimisation

  • optimization(bidirectional_pricing).ipynb
  • optimization(unidirectional_pricing).ipynb
  • optimization_with_penalty.ipynb : Copy of optimization.ipynb used to compare the effect of the penalty functions.
  • optimization_null.ipynb : Copy of optimization but adjusted for Case 0 (no prediction).

ML training and exploration

  • [Austin]solar_temp_predictions.ipynb : Data cleaning and DNN models experiments for solar insolation and temp predictions
  • [BOM]solar_predictions.ipynb : Data cleaning and DNN models experiments for BOM-72 solar insolation predictions.
  • [BOM]Outdoor_temperature_predictions.ipynb : Data cleaning and classical ML models experiments for BOM dataset.
  • complete_temp.ipynb : Data cleaning and DNN models for BOM-72 temperature predictions.
  • load_dnn.ipynb : DNN models experiments for load predictions
  • load_prediction.ipynb : Classical ML models for load predictions
  • mol_model_testin.ipynb : To test teh ml_model.py and online_batches.py classes
  • load_data.ipynb

About

LDI projekt

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages