Kalite means Quality in Turkish.
This is a framework on top of open source Great Expectations PySpark Suite with additional features.
About Great Expectations:
- It supports Spark 3.0
- It has built in Metrics and Validations Suite that provide information
- [Optional] Can be hooked up with the GE HTML static pages
On Top of GE:
- Ability to return a standardized DataFrame for both Metrics and Validations that can be pushed to DWH for historical analysis
- Runs all validations first before failing the pipeline
- Returns a Validation generated standardized DataFrame
- Failing the pipeline when one of the validation has failed
- Logs validation through logger
- Support to add metadata column for tracking purposes (dag_id etc)
- Support to pass optional pipeline args (batch_date etc)
- Deriving validations through configurations (YAML configs or Dict)
- Easy to run default metrics
- Ability to use lower level api for metrics and validations
Requires: 3.7.0 < Python < 3.11.0
Few ways:
- Download from Pypi
pip install data-kalite
- Clone and integrate in your codebase
- Clone and build your python package:
pip install .
for local installpython setup.py bdist_wheel
for distribution
How to run metrics:
Read: Limitations
To run default metrics;
from kalite.application.default_metrics import DefaultMetrics
source_data = "<set_dataframe>"
metadata = {
"dag_id": "<set>",
"dag_task_id": "<set>",
"dag_run_id": "<set>",
"pipeline_args": {"<set>": "<set>"}, # OPTIONAL
}
# run() returns a DataFrame
# set unique_count_threshold depending on data size: Details [here](https://github.com/MJFND/data-kalite/blob/main/kalite/functions/metrics.py#L27-L29)
metrics = DefaultMetrics(source_data=source_data, metadata=metadata, unique_count_threshold=5).run()
metrics.show(10,False)
Implementing Metrics:
from typing import List
from kalite.data_classes.metrics_data import MetricsData
from kalite.functions.metrics import GeMetrics, Metrics
class TempM(Metrics):
def metrics(self) -> List[MetricsData]:
return GeMetrics(self.source_data).\
get_column_unique_count("column_A").\
get_column_max("column_B").\
result()
source_data = "<set_dataframe>"
metadata = {
"dag_id": "<set>",
"dag_task_id": "<set>",
"dag_run_id": "<set>",
"pipeline_args": {"<set>": "<set>"}, # OPTIONAL
}
# run() returns a DataFrame
# set unique_count_threshold depending on data size: Details [here](https://github.com/MJFND/data-kalite/blob/main/kalite/functions/metrics.py#L27-L29)
metrics = TempM(source_data=source_data, metadata=metadata, unique_count_threshold=2).run()
metrics.show(10,False)
Refer to unit test cases on usage.
Metrics sample result:
id | created_at | pipeline_args | dag_id | dag_run_id | dag_task_id | metrics | results | column_name | column_value |
---|---|---|---|---|---|---|---|---|---|
53d924311faca5490a94d6f2d51ae7d6 | 2023-05-29 23:12:35.351 | {id -> 123, flag -> True} | mydag | 123456 | mytask | get_column_unique_count | 0.0 | event_date | null |
9c209f282a8a91f4a2c07b59406e68cf | 2023-05-29 23:12:35.351 | {id -> 123, flag -> True} | mydag | 123456 | mytask | get_column_value_count | 10.0 | source | unknown |
5f57c0104e1fab302b134bac84b7c2d2 | 2023-05-29 23:12:35.351 | {id -> 123, flag -> True} | mydag | 123456 | mytask | get_column_median | 10.0 | device_os_version | null |
afc8be1f1a2fc296f2133ebc1cca45f7 | 2023-05-29 23:12:35.351 | {id -> 123, flag -> True} | mydag | 123456 | mytask | get_rate | 0.9 | device_os_name | Android |
3d10cc1b98a617e54a8af6eed33677d4 | 2023-05-29 23:12:35.351 | {id -> 123, flag -> True} | mydag | 123456 | mytask | get_column_unique_count | 0.0 | type | null |
How to run validations:
Read: Limitations
To run validations, validations
function must be implemented.
from typing import List
from kalite.data_classes.validations_data import ValidationsData
from kalite.functions.validations import GeValidations, Validations
class TempV(Validations):
def validations(self) -> List[ValidationsData]:
return GeValidations(self.source_data).\
expect_column_to_exist("column_A").\
expect_column_values_to_be_of_type("column_A", "StringType").\
expect_column_value_to_exist("column_A", "XYZ").\
expect_column_values_to_not_have_one_unique_count("column_A").\
result()
# source_data = "<set_dataframe>"
metadata = {
"dag_id": "<set>",
"dag_task_id": "<set>",
"dag_run_id": "<set>",
"pipeline_args": {"<set>": "<set>"}, # OPTIONAL
}
# run() returns a DataFrame
validations = TempV(source_data=source_data, metadata=metadata).run()
validations.show(10,False)
Refer to unit test cases on usage.
A simple validator service on top of validations that allows to perform validations via a config dynamically.
A config should be in a standard Dict
format as shown underconfig_driven_validations.py
.
Calling the function is easy, just pass config param as Dict, could be derived from a YAML or JSON. Benefits of decoupling from code is you can keep these validations in a centralized Data Contract repository.
YAML Config:
validations:
<column_name>:
- validation_1
- validation_2
.
.
- validation_n
Refer to unit test resource for full example: link
Function require config to be dictionary, it can be sourced from YAML or JSON as long as structure is followed.
from kalite.application.config_driven_validations import ConfigDrivenValidations
source_data = "<set_dataframe>"
metadata = {
"dag_id": "<set>",
"dag_task_id": "<set>",
"dag_run_id": "<set>",
"pipeline_args": {"<set>": "<set>"}, # OPTIONAL
}
config = "<set_dict>" # Details: https://github.com/MJFND/data-kalite/blob/main/kalite/application/config_driven_validations.py#L20-L28
# run() returns a DataFrame
validations = ConfigDrivenValidations(source_data=source_data, metadata=metadata, config=config).run()
validations.show(10,False)
Refer to unit test cases on usage.
Validation sample result:
id | created_at | pipeline_args | dag_id | dag_run_id | dag_task_id | validations | results | column_name | ge_metadata |
---|---|---|---|---|---|---|---|---|---|
40a2037a2298c8a86aa9c5c92c3a9db9 | 2023-05-29 16:20:32.975 | {id -> 123, flag -> True} | mydag | 123456 | mytask | expect_column_to_exist | PASS | decision | {"meta": {}, "result": {}, "success": true, "expectation_config": {"meta": {}, "kwargs": {"column": "decision", "result_format": "BASIC"}, "expectation_type": "expect_column_to_exist"}, "exception_info": {"raised_exception": false, "exception_traceback": null, "exception_message": null}} |
f5af2ed95a5ac827cf7d5020e44fee6e | 2023-05-29 16:20:32.975 | {id -> 123, flag -> True} | mydag | 123456 | mytask | expect_column_values_to_be_of_type | PASS | decision | {"meta": {}, "result": {"observed_value": "StringType"}, "success": true, "expectation_config": {"meta": {}, "kwargs": {"column": "decision", "type_": "StringType", "result_format": "BASIC"}, "expectation_type": "expect_column_values_to_be_of_type"}, "exception_info": {"raised_exception": false, "exception_traceback": null, "exception_message": null}} |
After generating the DataFrame of validations, Validator
can be used to throw exception to fail pipeline.
from kalite.functions.validator import Validator
validation_data = "<set_dataframe>" # dataframe that was generated through Validations
Validator.validate(validation_data)
Data-Kalite does not support DATE
or TIMESTAMP
datatype input columns for certain metrics that requires column_value
to be set.
E.g. Metric get_column_values_count
, See metrics here
column_value
is casted asSTRING
duringDataFrame
generation, casting can fail if input types areDATE
orTIMESTAMP
.
Since Spark column can be of one type, workaround is to explicitly convert these into STRING
before running metrics or avoid running these checks for those types of columns.
Using makefile
to keep things simple.
make install
- test via:
make pre-commit
git commit
- test via:
- To learn more about
pre-commit
tools check the.pre-commit-config.yaml
in root.
How to add new metrics:
- All metrics must start with
get_
- All metrics must be wrapped in a
@Metrics.standardize
function. - All metrics must return a
MetricsSuiteResult
- Most of the metrics are abstraction on top of GE as mentioned here.
Refer to existing function in metrics.py
How to add new validations:
- All expectations must start with
expect_
- All expectations must be wrapped in a
@Validations.standardize
function. - All expectations must return a
ExpectationSuiteValidationResult
- Most of the validations are abstraction on top of GE as mentioned here.
Refer to existing function in validations.py