Skip to content

Commit

Permalink
Liif config (open-mmlab#234)
Browse files Browse the repository at this point in the history
* Add config of LIIF.

* Rebase and modify pipeline.

* Add download links.

* Move link position.

* Modify README.md

Co-authored-by: liyinshuo <[email protected]>
  • Loading branch information
Yshuo-Li and liyinshuo authored Apr 7, 2021
1 parent 3a04b6e commit 432b5be
Show file tree
Hide file tree
Showing 3 changed files with 322 additions and 0 deletions.
38 changes: 38 additions & 0 deletions configs/restorers/liif/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Learning Continuous Image Representation with Local Implicit Image Function (LIIF)

## Introduction

[ALGORITHM]

```bibtex
@article{chen2020learning,
title={Learning Continuous Image Representation with Local Implicit Image Function},
author={Chen, Yinbo and Liu, Sifei and Wang, Xiaolong},
journal={arXiv preprint arXiv:2012.09161},
year={2020}
}
```

## Results and Models

Evaluated on RGB channels, `scale` pixels in each border are cropped before evaluation.

The metrics are `PSNR / SSIM`.

Data is normalized according to [EDSR](/configs/restorers/edsr).

△ refers to ditto.

|method|scale|Set5| Set14 | DIV2K | Download |
| :--------------: | :--------------: | :--------------: | :--------------: | :--------------: | :--------------: |
|[liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k](configs/restorers/liif/liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k.py)| x2 | 35.7148 / 0.9367 | 31.5936 / 0.8889 | 34.5896 / 0.9352 | [model](https://download.openmmlab.com/mmediting/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k_20210319-329ce255.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k_20210319-329ce255.log.json) |
|| x3 | 32.3596 / 0.8914 | 28.4475 / 0.8040 | 30.9154 / 0.8720 ||
|| x4 | 30.2583 / 0.8513 | 26.7867 / 0.7377 | 29.0048 / 0.8183 ||
|[liif_edsr_norm_c64b16_g1_1000k_div2k](/configs/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k.py)| x2 | 35.7120 / 0.9365 | 31.6106 / 0.8891 | 34.6401 / 0.9353 ||
|| x3 | 32.3655 / 0.8913 | 28.4605 / 0.8039 | 30.9597 / 0.8711 ||
|| x4 | 30.2668 / 0.8511 | 26.8093 / 0.7377 | 29.0059 / 0.8183 ||
|| x6 | 27.0907 / 0.7775 | 24.7129 / 0.6438 | 26.7694 / 0.7422 ||
|| x12 | 22.9046 / 0.6255 | 21.5378 / 0.5088 | 23.7269 / 0.6373 ||
|| x18 | 20.8445 / 0.5390 | 20.0215 / 0.4521 | 22.1920 / 0.5947 ||
|| x24 | 19.7305 / 0.5033 | 19.0703 / 0.4218 | 21.2025 / 0.5714 ||
|| x30 | 18.6646 / 0.4818 | 18.0210 / 0.3905 | 20.5022 / 0.5568 ||
131 changes: 131 additions & 0 deletions configs/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
exp_name = 'liif_edsr_norm_c64b16_g1_1000k_div2k'
scale_min, scale_max = 1, 4

# model settings
model = dict(
type='LIIF',
generator=dict(
type='EDSR',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16),
imnet=dict(
type='MLPRefiner',
in_dim=64,
out_dim=3,
hidden_list=[256, 256, 256, 256]),
local_ensemble=True,
feat_unfold=True,
cell_decode=True,
rgb_mean=(0.4488, 0.4371, 0.4040),
rgb_std=(1., 1., 1.),
eval_bsize=30000,
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale_max)

# dataset settings
scale_min, scale_max = 1, 4
# dataset settings
train_dataset_type = 'SRFolderGTDataset'
val_dataset_type = 'SRFolderGTDataset'
test_dataset_type = 'SRFolderGTDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='color',
channel_order='rgb'),
dict(
type='RandomDownSampling',
scale_min=scale_min,
scale_max=scale_max,
inp_size=48),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='GenerateCoordinateAndCell', sample_q=2304),
dict(
type='Collect',
keys=['lq', 'gt', 'coord', 'cell'],
meta_keys=['gt_path'])
]
valid_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='color',
channel_order='rgb'),
dict(type='RandomDownSampling', scale_min=scale_max, scale_max=scale_max),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='GenerateCoordinateAndCell'),
dict(
type='Collect',
keys=['lq', 'gt', 'coord', 'cell'],
meta_keys=['gt_path'])
]

data = dict(
workers_per_gpu=8,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=20,
dataset=dict(
type=train_dataset_type,
gt_folder='data/DIV2K/DIV2K_train_HR',
pipeline=train_pipeline,
scale=scale_max)),
val=dict(
type=val_dataset_type,
gt_folder='data/val_set5/Set5',
pipeline=valid_pipeline,
scale=scale_max),
test=dict(
type=test_dataset_type,
gt_folder='data/val_set5/Set5',
pipeline=valid_pipeline,
scale=scale_max,
filename_tmpl='{}'))

# optimizer
optimizers = dict(type='Adam', lr=1.e-4)

# learning policy
iter_per_epoch = 1000
total_iters = 1000 * iter_per_epoch
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(
interval=iter_per_epoch, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=iter_per_epoch, save_image=True, gpu_collect=True)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook')
])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]
153 changes: 153 additions & 0 deletions configs/restorers/liif/liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
exp_name = 'liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k'
scale_min, scale_max = 1, 4

# model settings
model = dict(
type='LIIF',
generator=dict(
type='EDSR',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16),
imnet=dict(
type='MLPRefiner',
in_dim=64,
out_dim=3,
hidden_list=[256, 256, 256, 256]),
local_ensemble=True,
feat_unfold=True,
cell_decode=True,
rgb_mean=(0.4488, 0.4371, 0.4040),
rgb_std=(1., 1., 1.),
eval_bsize=30000,
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale_max)

# dataset settings
scale_min, scale_max = 1, 4
# dataset settings
train_dataset_type = 'SRFolderGTDataset'
val_dataset_type = 'SRFolderGTDataset'
test_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='color',
channel_order='rgb'),
dict(
type='RandomDownSampling',
scale_min=scale_min,
scale_max=scale_max,
inp_size=48),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='GenerateCoordinateAndCell', sample_q=2304),
dict(
type='Collect',
keys=['lq', 'gt', 'coord', 'cell'],
meta_keys=['gt_path'])
]
valid_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='color',
channel_order='rgb'),
dict(type='RandomDownSampling', scale_min=scale_max, scale_max=scale_max),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='GenerateCoordinateAndCell'),
dict(
type='Collect',
keys=['lq', 'gt', 'coord', 'cell'],
meta_keys=['gt_path'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='color',
channel_order='rgb'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='color',
channel_order='rgb'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='GenerateCoordinateAndCell', scale=scale_max),
dict(
type='Collect',
keys=['lq', 'gt', 'coord', 'cell'],
meta_keys=['gt_path'])
]

data = dict(
workers_per_gpu=8,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=20,
dataset=dict(
type=train_dataset_type,
gt_folder='data/DIV2K/DIV2K_train_HR',
pipeline=train_pipeline,
scale=scale_max)),
val=dict(
type=val_dataset_type,
gt_folder='data/val_set5/Set5',
pipeline=valid_pipeline,
scale=scale_max),
test=dict(
type=test_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx{:d}'.format(scale_max),
gt_folder='data/val_set5/Set5',
pipeline=test_pipeline,
scale=scale_max,
filename_tmpl='{}'))

# optimizer
optimizers = dict(type='Adam', lr=1.e-4)

# learning policy
iter_per_epoch = 1000
total_iters = 1000 * iter_per_epoch
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(
interval=iter_per_epoch, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=iter_per_epoch, save_image=True, gpu_collect=True)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook')
])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]

0 comments on commit 432b5be

Please sign in to comment.