forked from open-mmlab/mmgeneration
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add config of LIIF. * Rebase and modify pipeline. * Add download links. * Move link position. * Modify README.md Co-authored-by: liyinshuo <[email protected]>
- Loading branch information
Showing
3 changed files
with
322 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# Learning Continuous Image Representation with Local Implicit Image Function (LIIF) | ||
|
||
## Introduction | ||
|
||
[ALGORITHM] | ||
|
||
```bibtex | ||
@article{chen2020learning, | ||
title={Learning Continuous Image Representation with Local Implicit Image Function}, | ||
author={Chen, Yinbo and Liu, Sifei and Wang, Xiaolong}, | ||
journal={arXiv preprint arXiv:2012.09161}, | ||
year={2020} | ||
} | ||
``` | ||
|
||
## Results and Models | ||
|
||
Evaluated on RGB channels, `scale` pixels in each border are cropped before evaluation. | ||
|
||
The metrics are `PSNR / SSIM`. | ||
|
||
Data is normalized according to [EDSR](/configs/restorers/edsr). | ||
|
||
△ refers to ditto. | ||
|
||
|method|scale|Set5| Set14 | DIV2K | Download | | ||
| :--------------: | :--------------: | :--------------: | :--------------: | :--------------: | :--------------: | | ||
|[liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k](configs/restorers/liif/liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k.py)| x2 | 35.7148 / 0.9367 | 31.5936 / 0.8889 | 34.5896 / 0.9352 | [model](https://download.openmmlab.com/mmediting/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k_20210319-329ce255.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k_20210319-329ce255.log.json) | | ||
|△| x3 | 32.3596 / 0.8914 | 28.4475 / 0.8040 | 30.9154 / 0.8720 | △ | | ||
|△| x4 | 30.2583 / 0.8513 | 26.7867 / 0.7377 | 29.0048 / 0.8183 | △ | | ||
|[liif_edsr_norm_c64b16_g1_1000k_div2k](/configs/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k.py)| x2 | 35.7120 / 0.9365 | 31.6106 / 0.8891 | 34.6401 / 0.9353 | △ | | ||
|△| x3 | 32.3655 / 0.8913 | 28.4605 / 0.8039 | 30.9597 / 0.8711 | △ | | ||
|△| x4 | 30.2668 / 0.8511 | 26.8093 / 0.7377 | 29.0059 / 0.8183 | △ | | ||
|△| x6 | 27.0907 / 0.7775 | 24.7129 / 0.6438 | 26.7694 / 0.7422 | △ | | ||
|△| x12 | 22.9046 / 0.6255 | 21.5378 / 0.5088 | 23.7269 / 0.6373 | △ | | ||
|△| x18 | 20.8445 / 0.5390 | 20.0215 / 0.4521 | 22.1920 / 0.5947 | △ | | ||
|△| x24 | 19.7305 / 0.5033 | 19.0703 / 0.4218 | 21.2025 / 0.5714 | △ | | ||
|△| x30 | 18.6646 / 0.4818 | 18.0210 / 0.3905 | 20.5022 / 0.5568 | △ | |
131 changes: 131 additions & 0 deletions
131
configs/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
exp_name = 'liif_edsr_norm_c64b16_g1_1000k_div2k' | ||
scale_min, scale_max = 1, 4 | ||
|
||
# model settings | ||
model = dict( | ||
type='LIIF', | ||
generator=dict( | ||
type='EDSR', | ||
in_channels=3, | ||
out_channels=3, | ||
mid_channels=64, | ||
num_blocks=16), | ||
imnet=dict( | ||
type='MLPRefiner', | ||
in_dim=64, | ||
out_dim=3, | ||
hidden_list=[256, 256, 256, 256]), | ||
local_ensemble=True, | ||
feat_unfold=True, | ||
cell_decode=True, | ||
rgb_mean=(0.4488, 0.4371, 0.4040), | ||
rgb_std=(1., 1., 1.), | ||
eval_bsize=30000, | ||
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')) | ||
# model training and testing settings | ||
train_cfg = None | ||
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale_max) | ||
|
||
# dataset settings | ||
scale_min, scale_max = 1, 4 | ||
# dataset settings | ||
train_dataset_type = 'SRFolderGTDataset' | ||
val_dataset_type = 'SRFolderGTDataset' | ||
test_dataset_type = 'SRFolderGTDataset' | ||
train_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
io_backend='disk', | ||
key='gt', | ||
flag='color', | ||
channel_order='rgb'), | ||
dict( | ||
type='RandomDownSampling', | ||
scale_min=scale_min, | ||
scale_max=scale_max, | ||
inp_size=48), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict( | ||
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, | ||
direction='horizontal'), | ||
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'), | ||
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5), | ||
dict(type='ImageToTensor', keys=['lq', 'gt']), | ||
dict(type='GenerateCoordinateAndCell', sample_q=2304), | ||
dict( | ||
type='Collect', | ||
keys=['lq', 'gt', 'coord', 'cell'], | ||
meta_keys=['gt_path']) | ||
] | ||
valid_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
io_backend='disk', | ||
key='gt', | ||
flag='color', | ||
channel_order='rgb'), | ||
dict(type='RandomDownSampling', scale_min=scale_max, scale_max=scale_max), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict(type='ImageToTensor', keys=['lq', 'gt']), | ||
dict(type='GenerateCoordinateAndCell'), | ||
dict( | ||
type='Collect', | ||
keys=['lq', 'gt', 'coord', 'cell'], | ||
meta_keys=['gt_path']) | ||
] | ||
|
||
data = dict( | ||
workers_per_gpu=8, | ||
train_dataloader=dict(samples_per_gpu=16, drop_last=True), | ||
val_dataloader=dict(samples_per_gpu=1), | ||
test_dataloader=dict(samples_per_gpu=1), | ||
train=dict( | ||
type='RepeatDataset', | ||
times=20, | ||
dataset=dict( | ||
type=train_dataset_type, | ||
gt_folder='data/DIV2K/DIV2K_train_HR', | ||
pipeline=train_pipeline, | ||
scale=scale_max)), | ||
val=dict( | ||
type=val_dataset_type, | ||
gt_folder='data/val_set5/Set5', | ||
pipeline=valid_pipeline, | ||
scale=scale_max), | ||
test=dict( | ||
type=test_dataset_type, | ||
gt_folder='data/val_set5/Set5', | ||
pipeline=valid_pipeline, | ||
scale=scale_max, | ||
filename_tmpl='{}')) | ||
|
||
# optimizer | ||
optimizers = dict(type='Adam', lr=1.e-4) | ||
|
||
# learning policy | ||
iter_per_epoch = 1000 | ||
total_iters = 1000 * iter_per_epoch | ||
lr_config = dict( | ||
policy='Step', | ||
by_epoch=False, | ||
step=[200000, 400000, 600000, 800000], | ||
gamma=0.5) | ||
|
||
checkpoint_config = dict( | ||
interval=iter_per_epoch, save_optimizer=True, by_epoch=False) | ||
evaluation = dict(interval=iter_per_epoch, save_image=True, gpu_collect=True) | ||
log_config = dict( | ||
interval=100, | ||
hooks=[ | ||
dict(type='TextLoggerHook', by_epoch=False), | ||
dict(type='TensorboardLoggerHook') | ||
]) | ||
visual_config = None | ||
|
||
# runtime settings | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = f'./work_dirs/{exp_name}' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
153 changes: 153 additions & 0 deletions
153
configs/restorers/liif/liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
exp_name = 'liif_edsr_norm_x2-4_c64b16_g1_1000k_div2k' | ||
scale_min, scale_max = 1, 4 | ||
|
||
# model settings | ||
model = dict( | ||
type='LIIF', | ||
generator=dict( | ||
type='EDSR', | ||
in_channels=3, | ||
out_channels=3, | ||
mid_channels=64, | ||
num_blocks=16), | ||
imnet=dict( | ||
type='MLPRefiner', | ||
in_dim=64, | ||
out_dim=3, | ||
hidden_list=[256, 256, 256, 256]), | ||
local_ensemble=True, | ||
feat_unfold=True, | ||
cell_decode=True, | ||
rgb_mean=(0.4488, 0.4371, 0.4040), | ||
rgb_std=(1., 1., 1.), | ||
eval_bsize=30000, | ||
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')) | ||
# model training and testing settings | ||
train_cfg = None | ||
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale_max) | ||
|
||
# dataset settings | ||
scale_min, scale_max = 1, 4 | ||
# dataset settings | ||
train_dataset_type = 'SRFolderGTDataset' | ||
val_dataset_type = 'SRFolderGTDataset' | ||
test_dataset_type = 'SRFolderDataset' | ||
train_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
io_backend='disk', | ||
key='gt', | ||
flag='color', | ||
channel_order='rgb'), | ||
dict( | ||
type='RandomDownSampling', | ||
scale_min=scale_min, | ||
scale_max=scale_max, | ||
inp_size=48), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict( | ||
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, | ||
direction='horizontal'), | ||
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'), | ||
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5), | ||
dict(type='ImageToTensor', keys=['lq', 'gt']), | ||
dict(type='GenerateCoordinateAndCell', sample_q=2304), | ||
dict( | ||
type='Collect', | ||
keys=['lq', 'gt', 'coord', 'cell'], | ||
meta_keys=['gt_path']) | ||
] | ||
valid_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
io_backend='disk', | ||
key='gt', | ||
flag='color', | ||
channel_order='rgb'), | ||
dict(type='RandomDownSampling', scale_min=scale_max, scale_max=scale_max), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict(type='ImageToTensor', keys=['lq', 'gt']), | ||
dict(type='GenerateCoordinateAndCell'), | ||
dict( | ||
type='Collect', | ||
keys=['lq', 'gt', 'coord', 'cell'], | ||
meta_keys=['gt_path']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
io_backend='disk', | ||
key='gt', | ||
flag='color', | ||
channel_order='rgb'), | ||
dict( | ||
type='LoadImageFromFile', | ||
io_backend='disk', | ||
key='lq', | ||
flag='color', | ||
channel_order='rgb'), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict(type='ImageToTensor', keys=['lq', 'gt']), | ||
dict(type='GenerateCoordinateAndCell', scale=scale_max), | ||
dict( | ||
type='Collect', | ||
keys=['lq', 'gt', 'coord', 'cell'], | ||
meta_keys=['gt_path']) | ||
] | ||
|
||
data = dict( | ||
workers_per_gpu=8, | ||
train_dataloader=dict(samples_per_gpu=16, drop_last=True), | ||
val_dataloader=dict(samples_per_gpu=1), | ||
test_dataloader=dict(samples_per_gpu=1), | ||
train=dict( | ||
type='RepeatDataset', | ||
times=20, | ||
dataset=dict( | ||
type=train_dataset_type, | ||
gt_folder='data/DIV2K/DIV2K_train_HR', | ||
pipeline=train_pipeline, | ||
scale=scale_max)), | ||
val=dict( | ||
type=val_dataset_type, | ||
gt_folder='data/val_set5/Set5', | ||
pipeline=valid_pipeline, | ||
scale=scale_max), | ||
test=dict( | ||
type=test_dataset_type, | ||
lq_folder='data/val_set5/Set5_bicLRx{:d}'.format(scale_max), | ||
gt_folder='data/val_set5/Set5', | ||
pipeline=test_pipeline, | ||
scale=scale_max, | ||
filename_tmpl='{}')) | ||
|
||
# optimizer | ||
optimizers = dict(type='Adam', lr=1.e-4) | ||
|
||
# learning policy | ||
iter_per_epoch = 1000 | ||
total_iters = 1000 * iter_per_epoch | ||
lr_config = dict( | ||
policy='Step', | ||
by_epoch=False, | ||
step=[200000, 400000, 600000, 800000], | ||
gamma=0.5) | ||
|
||
checkpoint_config = dict( | ||
interval=iter_per_epoch, save_optimizer=True, by_epoch=False) | ||
evaluation = dict(interval=iter_per_epoch, save_image=True, gpu_collect=True) | ||
log_config = dict( | ||
interval=100, | ||
hooks=[ | ||
dict(type='TextLoggerHook', by_epoch=False), | ||
dict(type='TensorboardLoggerHook') | ||
]) | ||
visual_config = None | ||
|
||
# runtime settings | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = f'./work_dirs/{exp_name}' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |