Skip to content

Utility package for metrics, splitting and evaluate Collaborative Filtering algorithms

License

Notifications You must be signed in to change notification settings

JuliaRecsys/EvaluationCF.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EvaluationCF.jl

Package for evaluation of predictive algorithms. It contains metrics, data partitioning and more.

Installation: at the Julia REPL, Pkg.add("EvaluationCF")

Reporting Issues and Contributing: See CONTRIBUTING.md

Example

julia> using Persa, DatasetsCF, ModelBasedCF, EvaluationCF

julia> dataset = DatasetsCF.MovieLens()
Collaborative Filtering Dataset
- # users: 943
- # items: 1682
- # ratings: 100000
- Ratings Preference: [1, 2, 3, 4, 5]

julia> k = 10

julia> folds = EvaluationCF.KFolds(dataset; k = k)

julia> mae = 0; rmse = 0; coverage = 0;

julia> for (ds_train, ds_test) in folds
           model = ModelBasedCF.RandomModel(ds_train)
           mae += EvaluationCF.mae(model, ds_test)
           rmse += EvaluationCF.rmse(model, ds_test)
           coverage += EvaluationCF.coverage(model, ds_test)
       end

julia> print(""" Experiment:
            MAE: $(mae / k)
            RMSE: $(rmse / k)
            Coverage: $(coverage / k)
        """)
 Experiment:
    MAE: 1.5095299999999998
    RMSE: 1.884630523993449
    Coverage: 1.0

About

Utility package for metrics, splitting and evaluate Collaborative Filtering algorithms

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages