-
Notifications
You must be signed in to change notification settings - Fork 101
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
associatedLegendre.jl #24
base: master
Are you sure you want to change the base?
Conversation
Matlab doesn't calculate associated Legendre type 3 (z>1) function but does do type 2 (-1<=x<=1) approx. .0007 sec compared to average .00014sec recNM3(n,m,z) which is a recursive implementation.
Julia file that calculates some associated Legendre functions
On line 46 changed 1 to one(x) On line 84 changed 1. to one(z) for arbitrary precision, etc.
To properly evaluate a PR, it is essential to have:
Also, I wouldn't submit Jupyter notebooks. |
Thanks for editting and making the PR more readable; congratulations on your new position AA. Thanks to SJ for mentoring and encouragement. I can't benchmark against what does not exist: matlab, maxima, scipy.special, gsl do not have associated Legendre type 3 (z > 1). I have used SLegendreP3 (which I derived and used a long time ago) ; similarly SLegendreP2 gives reliable results compared to scipy.special for |x| <1 . function BenchmarkZZLegendreP2 , shows that ZZLegendreP2 is faster than scipy.special. ZZLegendreP3 comes from a modification of work published by Selezneva, etal. If the general direction of the PR is OK; then I can extract all the test... functions to test.jl and do additional work. All suggestions, comments,etc. are welcome. Thank you for helping me to learn Julia scientific computing.
# solutions, w, of the differential equation are
# associated Legendre functions
# (1-x*x)d/dx(dw/dx)�-2�x�(dw/dx)+(n(n+1)-m*m/(1-x*x))w=0
#n is the degree and m is the order.
#for m =0 they are a.k.a. Legendre polynomials
# see https://github.com/pjabardo/Jacobi.jl/blob/master/src/legendre.jl
# for m=0 also.
#
# SSLegendreP2 and 3 : The finite sum I derived is arranged so that
# each term is a multiple of the preceeding term.
#
# LegendreP2 uses the recursion equation 8.5.3 Abramowitz & Stegun (AS)
# https://www.math.hkbu.edu.hk/support/aands/frameindex.htm
#Handbook of Mathematical Functions is
# (n-m+1)P(n+1,m,z)=(2n+1)zP(n,m,z)- (n+m)P(n-1,m,z)
# By normalizing so that that P*P integrated is unity, the new P denoted
# by PP satisfies an altered 3 term recursion. This is discussed in
# Numerical Recipes 3rd ed. see https://github.com/milthorpe/
# SphericalHarmonics.jl/blob/master/src/SphericalHarmonics.jl
# T.Fukushima has Fortran codes (https://static-content.springer.
# com/esm/art%3A10.1007%2Fs00190-011-0519-2/MediaObjects
# /190_2011_519_MOESM_ESM.txt);JamesBremerJr(github) and arXiv:1707.03287
#
# ZZLegendreP2 and 3 uses a different recursion
# P(n,m+2,x)+2(m+1)x(s(1-x*x))^(-1/2)P(n,m+1,x)+s(n-m)(n+m+1)P(n,m,x)=0
#from http://dlmf.nist.gov/14.10 equation 14.10.1 where s=sign(1-x*x)
#refer to Lebedev, Special Functions, Dover Pub. eqn. 7.12.8 page 194
# See function BenchmarkZZLegemdreP2() for speed.
#
#These recursions are valid for Legendre functions of the first kind
#(P(n,m,z))and second kind Q(n,m,z) ,
#(for types 1,2,3 ,definition from Mathematica documentation
# type 1 (?) is m=0, type 2 is -1<=x<=1 and type 3 is z> 1
# http://mpmath.org/doc/0.18/functions/orthogonal.html
#Thus we define functions LegendreP2,....P3,....Q2,...Q3
# for n and m positive integers 0<=m<=n
# refer to http://dlmf.nist.gov/14.6
#P(n,m,z) and Q(n,m,�z) (z> 1) are often referred to as the prolate
#spheroidal harmonics of the first and second kinds, respectively
# We can define spherical harmonics (there are other definitions)
# Y(n,m,theta,phi)= LegendreP2(n,|m|,theta)*exp(im*m*phi)*((-)^(|m|-m)/2))
# *sqrt((2n+1)*factorial(n-|m|)/(4*pi*factorial(n+|m|)))
# refer to https://en.wikipedia.org/wiki/Spherical_harmonics
"""
LegendreP2(n::Integer,m::Integer,x::Number)
associated Legendre function of first kind type 2 (-1.<=x<=1.).
"""
function LegendreP2(n::Integer,m::Integer,x::Number)
# 0 <= m <= n
# -1<=x <= 1
M = (2*m -1) # M must be odd
# (2m-1)!!= (2m)!/( m! 2^m) double factorial
dblfac=one(x)
for j=1:2:M
dblfac=j*dblfac
end
pj2= ((-1)^m)*dblfac*(one(x)-x*x)^(m/2)
pj1=x*(2.*m+1.)*pj2
if n == m
return pj2
elseif n == m+1
return pj1
end
for j = m+2 :n
pjj=(x*(2.*j-1.)*pj1 - pj2*(j +m-1.)) /(j-m)
pj2=pj1
pj1=pjj
end
return pj1
end
using BenchmarkTools
using PyCall
pyimport_conda("scipy.special","scipy") ####
@pyimport scipy.special as s
function timelpmv()
for k=1:10^6
k2=k-1
x=.1 +k2*.9e-6
s.lpmv(15,30,x)
end
end
@btime timelpmv()
function timeLegendreP2()
for k=1:10^6
k2=k-1
x2= .1 + k2*.9e-6
LegendreP2(30,15,x2)
end
end
@btime timeLegendreP2()
"""
SSLegendreP2(n::Integer,m::Integer,x::Number)
associated Legendre function 1st kind type 2 , -1.<=x<=1.
each term in sum is multiple of previous, from SLegendreP2
"""
function SSLegendreP2(n::Integer,m::Integer,x::Number)#n,m integers
M = (2*n -1) # M must be odd
# (2m-1)!!= (2m)!/( m! 2^m) double factorial
DT=one(x) #1.0
if n > 0
for j=1:M
if isodd(j)
DT=DT*j
end
if j <= (n-m)
DT=DT/j
end
end
end
MXP=div(m+n,2)
sum= (x^(n+m))*DT/((one(x)-x*x)^(m/2))
prev=sum
for p=1:MXP
term=(-prev)*(n-p+1)*(n+m-2*p+1)*(n+m-2*p+2
)/(p*(2*n-2*p+1)*(2*n-2*p+2)*x*x)
sum=sum+term
prev=term
end
return sum
end
"""
ZZLegendreP2(n::Integer,m::Integer,z::Number)
associated Legendre function First kind type 2 |x|<=1.
uses different three term recursion
"""
function ZZLegendreP2(n::Integer,m::Integer,z::Number)
nz=1
pnm = zeros(typeof(z),2*n+1)
#fac = prod(2.:n)
fac= one(z) #1.0
for k=1:n
fac=fac*k
end
sqz2 = sqrt((one(z)-z.*z))
hsqz2 = 0.5*sqz2
ihsqz2 = z./hsqz2
if(n==0)
pnm[1]=one(z)
return ((-one(z))^m)*pnm[n+1+m] #pnm
end
if(n==1)
pnm[1]=-.5*sqz2
pnm[2]=z
pnm[3]=sqz2
return ((-one(z))^m)*pnm[n+1+m] #pnm
end
pnm[1] = (1-2*abs(n-2*floor(n/2)))*hsqz2.^n/fac
pnm[2] = -pnm[1]*n.*ihsqz2
for mr=1:2*n-1
pnm[mr+2]=(mr-n).*ihsqz2.*pnm[mr+1]-(2*n-mr+1)*mr*pnm[mr]
end
return ((-one(z))^m)*pnm[n+1+m]
end
#checking LegendreP2 against scipy.special
# for n< 18 the relative error is less than 2e-14
# for n < 45 rel error less than 2e-13
# for n < 62 the rel.error is less than 5e-12
# for n < 75 the rel.error is less than 5e-11
# the error depends on the n amd m values and x values to s(ome extent
using PyCall
pyimport_conda("scipy.special","scipy") ####
@pyimport scipy.special as s
"""
function testLegendreP2()
relative error LegendreP2 versus scipy special
"""
function testLegendreP2()
x=.6
rerr = 5e-11
for n=0:75 #17
for m=0:n #m=rand(0:n)
a=LegendreP2(n,m,x)
b=s.lpmv(m,n,x)
df=norm(a-b)/norm(b)
if ( df > rerr)
#if (norm(a-b)/norm(b)) > rerr)
println(n," ", m," ", a," ",b," ",df)
#@test_approx_eq_eps a b 1e-14
end
end
end
end
testLegendreP2()
"""
function testLegendreP2F()
compare LegendreP2 against Float64(SSLegendreP2)
"""
function testLegendreP2F()
#=
checking LegendreP2 against Float64SSLegendreP2
for n < 18 the relative error is less than 7e-15
error depends on the n amd m values and
x values to some extent
=#
x=.6
rerr = 7e-15
for n=1:75
if n > 18
rerr=2e-13
end
if n > 44
rerr= 5e-12
end
if n > 62
rerr= 5e-11
end
for m=0:n #rand(1:n)
a=LegendreP2(n,m,x)
b=Float64(SSLegendreP2(n,m,big(x)))
df=norm(a-b)/norm(b)
if ( df > rerr)
println(n," ", m," ", a," ",b," ",df)
end
end
end
end
testLegendreP2F()
#checking SSLegendreP2 against Float64(SSLegendreP2)
# for n< 17 the relative error is less than 3e-11
# the error depends on the n amd m values and x values to some extent
"""
function testSSLegendreP2F()
compare SSLegendreP2 to float64SSLegendreP2
"""
function testSSLegendreP2F()
x=.6
rerr = 3e-11
for n=0:17
for m=0:n #m=rand(0:n)
a=SSLegendreP2(n,m,x)
b=Float64(SSLegendreP2(n,m,big(x)))
df=norm(a-b)/norm(b)
if ( df > rerr)
println(n," ", m," ", a," ",b," ",df)
end
end
end
end
testSSLegendreP2F()
#checking SSLegendreP2 against scipy.special
# for n< 17 the relative error is less than 3e-11
# the error depends on the n amd m values and x values to some extent
using PyCall
@pyimport scipy.special as s
"""
function testSSLegendreP2()
compare SSLegendreP2 with scipy special
"""
function testSSLegendreP2()
x=.6
rerr = 3e-11
for n=1:17
for m=0:n #m=rand(1:n)
a=SSLegendreP2(n,m,x)
b=s.lpmv(m,n,x)
df=norm(a-b)/norm(b)
if ( df > rerr)
#if (norm(a-b)/norm(b)) > rerr)
println(n," ", m," ", a," ",b," ",df)
#@test_approx_eq_eps a b 1e-14
end
end
end
end
testSSLegendreP2()
#checking SSLegendreP2 against Float64(SSLegendreP2)
# for n< 17 the relative error is less than 3e-11
# the error depends on the n amd m values and x values to some extent
"""
function testSSLegendreP2F()
compare SSLegendreP2 to float64SSLegendreP2
"""
function testSSLegendreP2F()
x=.6
rerr = 3e-11
for n=0:17
for m=0:n #m=rand(0:n)
a=SSLegendreP2(n,m,x)
b=Float64(SSLegendreP2(n,m,big(x)))
df=norm(a-b)/norm(b)
if ( df > rerr)
println(n," ", m," ", a," ",b," ",df)
end
end
end
end
testSSLegendreP2F()
# derived from work published at
# i. a. selezneva, yu. l. ratis, e. hernández, j. pérez-quiles
#and p. fernández de córdoba:
#a code to calculate high order legendre polynomials
#rev. acad. colomb. cienc.: volumen xxxvii, número 145 - diciembre 2013
#www.scielo.org.co/pdf/racefn/v37n145/v37n145a09.pdf
#Selezneva.....pdf
"""
ZZLegendreP3(n::Integer,m::Integer,z::Number)
associated Legendre function First kind type 3 ( z > 1.)
uses different three term recursion
"""
function ZZLegendreP3(n::Integer,m::Integer,z::Number)
nz=1
pnm = zeros(typeof(z),2*n+1)#was nz,n+1
#fac = prod(2.:n)
fac= one(z) #1.0
for k=1:n
fac=fac*k
end
sqz2 = sqrt((z.*z - one(z)))
hsqz2 = 0.5*sqz2
ihsqz2 = z./hsqz2
if(n==0)
pnm[1]=one(z)
return ((-one(z))^m)*pnm[n+1+m]
end
if(n==1)
pnm[1]=-.5*sqz2
pnm[2]=z
pnm[3]=-sqz2 # sign
return ((-one(z))^m)*pnm[n+1+m]
end
pnm[1] = (1-2*abs(n-2*floor(n/2)))*hsqz2.^n/fac
pnm[2] = -pnm[1]*n.*ihsqz2
for mr=1:2*n-1
pnm[mr+2]=(mr-n).*ihsqz2.*pnm[mr+1]+(2*n-mr+1)*mr*pnm[mr]
end
return ((-one(z))^m)*pnm[n+1+m]
end
"""
SSLegendreP3(n::Integer,m::Integer,x::Number)
associated Legendre function 1st kind type 3 , x >1.
each term in sum is multiple of previous.
"""
function SSLegendreP3(n::Integer,m::Integer,x::Number)#n,m integers
M = (2*n -1) # M must be odd
# (2m-1)!!= (2m)!/( m! 2^m) double factorial
# dblfac=1
DT=one(x) #1.0
if n > 0
for j=1:M
if isodd(j)
DT=DT*j
end
if j <= (n-m)
DT=DT/j
end
end
end
MXP=div(m+n,2)
sum= (x^(n+m))*DT/((x*x - one(x))^(m/2))
prev=sum
for p=1:MXP
term=(-prev)*(n-p+1)*(n+m-2*p+1)*(n+m-2*p+2
)/(p*(2*n-2*p+1)*(2*n-2*p+2)*x*x)
sum=sum+term
prev=term
end
return sum
end
#A representation of associated Legendre function was derived from 8.6.6,
# 8.6.18,8.2.5,3.1.1 in AS (https://www.math.hkbu.edu.hk
# /support/aands/frameindex.htm).
# 14.7.8,14.7.10,14.7.11,14.7.14.1.2.2 in DLMF(dlmf.nist.gov),
#similar formula for type 2.
#(8.6.18 AS) Rodrigues' formula for integer n
# P(n,z)=(1/((2^n)n!)) (d/dz)^n (z^2 - 1)^n
#(8.6.6 AS) P(n,m,z)= ((z^2 -1)^(m/2))(d/dz)^m P(n,z) for z > 1
# P(n,m,x) = ((-)^m)((1-x^2)^(m/2))(d/dz)^m P(n,x) for |x| <= 1
# expand using binomial theorem where a=z^2 and b = -1
#(3.1.1 AS) define binomial coefficient = C(n,k) = n!/((n-k)! k!)
# defining n!=n*(n-1)*(n-2)*...3*2*1 = factorial(n)
# (a + b)^n = a^n + C(n,1)*(a^(n-1))*b + C(n,2)*(a^(n-1))*b^2
# +C(n,3)*(a^(n-3))*b^3 +.......+b^n where n is a positive integer
#differentiate to obtain the finite sum expression
#Benchmarking ZZLegendreP2 against scipy.special
using PyCall
using BenchmarkTools
@pyimport scipy.special as s
function timePY()
for i=1:100
s.lpmv(15,30,.6)
end
end
function timeZ2()
for i=1:100
ZZLegendreP2(30,15,.6)
end
end
"""
function BenchmarkZZLegendreP2()
timing for ZZLegendreP2 LegendreP2
more than five times as fast
compared to s.lpmv from scipy.special
speed may depend on n,m,x values
"""
function BenchmarkZZLegendreP2()
TPY= @elapsed(timePY())
println("time s.lpmv(15,30,.6) $TPY")
TZ2= @elapsed(timeZ2())
println("time ZZLegendreP2(30,15,.6) $TZ2")
#time s.lpmv(15,30,.6) 0.000674941
#time ZZLegendreP2(30,15,.6) 0.000112901
end
BenchmarkZZLegendreP2()
function timeZZ2()
for k=1:10^6
k2=k-1
x2=.1 +k2*.9e-6
ZZLegendreP2(30,15,x2)
end
end
function LPMV2()
for k=1:10^6
k2=k-1
x2=.1 +k2*.9e-6
s.lpmv(15,30,x2)
end
end
println("lpmv time")
@btime LPMV2()
println("ZZLegendreP2 time")
@btime timeZZ2()
#=
for k=1:10^6
k2=k-1
x2=.1 +k2*.9e-6
s.lpmv(15,30,x2)
end
println("lpmv time")
@btime LPMV2()
println("ZZLegendreP2 time")
@btime timeZZ2()
=#
#checking ZZLegendreP2 against scipy special
# for n< 41 the relative error is less than 2.4e-9
# for n < 61 the relative error is less than 6e-5
# the error depends on the n amd m values and x values to some extent
#
using PyCall
@pyimport scipy.special as s
"""
function testZZLegendreP2(
compare ZZLegendreP2 with scipy special
"""
function testZZLegendreP2()
x=.6
rerr = 2.4e-9# 5e-7
#for n =51: 80
for n=1:40
for m= 0:n #rand(1:n)
a=ZZLegendreP2(n,m,x)
b=s.lpmv(m,n,x)
df=norm(a-b)/norm(b)
if ( df > rerr)
println(n," ", m," ", a," ",b," ",df)
end
end
end
end
testZZLegendreP2()
#checking ZZLegendreP2 against Float64(SSLegendreP2)
# for n< 41 the relative error is less than 2.4e-9
# for n <61 the relative error is less than 6e-5
# the error depends on the n amd m values and x values to some extent
# largest errors for n=m or n= m+1 (could be fixed?)
"""
function testZZLegendreP2F()
compare ZZLegendreP2 with Float64 SSLegendreP2
"""
function testZZLegendreP2F()
x=.6
rerr = 2.4e-9
for n=1:40
for m= 0:n #rand(1:n)
a=ZZLegendreP2(n,m,x)
b=Float64(SSLegendreP2(n,m,big(x)))
df=norm(a-b)/norm(b)
if ( df > rerr)
println(n," ", m," ", a," ",b," ",df)
end
end
end
end
testZZLegendreP2F()
# derived from work published at
# i. a. selezneva, yu. l. ratis, e. hernández, j. pérez-quiles
#and p. fernández de córdoba:
#a code to calculate high order legendre polynomials
#rev. acad. colomb. cienc.: volumen xxxvii, número 145 - diciembre 2013
#www.scielo.org.co/pdf/racefn/v37n145/v37n145a09.pdf
#Selezneva.....pdf
"""
ZZLegendreP3(n::Integer,m::Integer,z::Number)
associated Legendre function First kind type 3 ( z > 1.)
uses different three term recursion
"""
function ZZLegendreP3(n::Integer,m::Integer,z::Number)
nz=1
pnm = zeros(typeof(z),2*n+1)#was nz,n+1
#fac = prod(2.:n)
fac= one(z) #1.0
for k=1:n
fac=fac*k
end
sqz2 = sqrt((z.*z - one(z)))
hsqz2 = 0.5*sqz2
ihsqz2 = z./hsqz2
if(n==0)
pnm[1]=one(z)
return ((-one(z))^m)*pnm[n+1+m]
end
if(n==1)
pnm[1]=-.5*sqz2
pnm[2]=z
pnm[3]=-sqz2 # sign
return ((-one(z))^m)*pnm[n+1+m]
end
pnm[1] = (1-2*abs(n-2*floor(n/2)))*hsqz2.^n/fac
pnm[2] = -pnm[1]*n.*ihsqz2
for mr=1:2*n-1
pnm[mr+2]=(mr-n).*ihsqz2.*pnm[mr+1]+(2*n-mr+1)*mr*pnm[mr]
end
return ((-one(z))^m)*pnm[n+1+m]
end
#checking ZZLegendreP3 against Float64(SSLegendreP3)
# for n< 17 the relative error is less than 6.4e-7 for z=2.
# for n<24 the relative error is less than .0054
# for z=3. n<17 the relative eror is less than 2e-7
# the error depends on the n amd m values and x values to some extent
#n=1 may have error
"""
function testZZLegendreP3F()
compare ZZLegendreP3 with float64 SSLegendreP3
"""
function testZZLegendreP3F()
x=3.#2.
rerr = 2e-7 #6.4e-7
for n=1:16
for m=0:n #rand(1:n)
a=ZZLegendreP3(n,m,x)
b=Float64(SSLegendreP3(n,m,big(x)))
df=norm(a-b)/norm(b)
if ( df > rerr)
println(n," ", m," ", a," ",b," ",df)
end
end
end
end
testZZLegendreP3F()
using PyCall
@pyimport scipy.special as s
"""
function ZZSS2(n,m,x,ESTOP)
Values near .99999 < x <= 1.000000 and -1.000000 <x<-.99999
causing problems
Identify n,m, x ,when zz is inaccurate
"""
function ZZSS2(n,m,x,ESTOP)
valueZZ=Float64(ZZLegendreP2(n,m,big(x)))
#valueS=Float64(SLegendreP2(n,m,big(x)))
valueSS=Float64(SSLegendreP2(n,m,big(x)))
valuezz=ZZLegendreP2(n,m,x)
#valuess=SSLegendreP2(n,m,x)
valuepy=s.lpmv(m,n,x)
prerr=abs((valuezz-valuepy)/valuepy)
zzrerr=abs((valuezz-valueZZ)/valueZZ)
if zzrerr > ESTOP
println()
println("n=$n, m=$m , x=$x , zz=$valuezz")
println("SS=$valueSS,ZZ=$valueZZ, py=$valuepy ")
println(" zzrerr= $zzrerr, prerr= $prerr")
end
end
ESTOP=.000000000001
n=10
for ix=1:10
x=1. - (.1)^ix
for m=0:n
ZZSS2(n,m,x,ESTOP)
end
end
n=10
for ix=1:10
x=-1. + (.1)^ix
for m=0:n
ZZSS2(n,m,x,ESTOP)
end
end
"""
function SSZZ1(n,m,x,ESTOP)
Values near 1.< x < 1.00001 causing problems
Identify n,m, x ,when zz goes negative, its underflow
The cutoff does change with n values
The user has the option to accept reduced accuracy
for certain values of n,m,x or to increase the accuracy
by using higher precision
"""
function SSZZ1(n,m,x,ESTOP)
valueZZ=Float64(ZZLegendreP3(n,m,big(x)))#high precision
#valueS=Float64(SLegendreP3(n,m,big(x)))
valueSS=Float64(SSLegendreP3(n,m,big(x)))
valuezz=ZZLegendreP3(n,m,x)
#valuess=SSLegendreP3(n,m,x)
zzrerr=abs((valuezz-valueZZ)/valueZZ)
#ssrerr=abs((valuess-valueSS)/valueSS)
if zzrerr > ESTOP
#if sign(valuezz) < 1
println()
println("n= $n, m= $m, x= $x")
println("SS=$valueSS,ZZ=$valueZZ, zz= $valuezz, zzrerr= $zzrerr")
#println("S=$valueS,SS=$valueSS,ZZ=$valueZZ, n= $n, m= $m, x= $x")
#println(" ssrerr= $ssrerr,ss= $valuess,zz= $valuezz, zzrerr= $zzrerr")
end
end
ESTOP = .000000000001 #e-12
n=10
for ix =1:7
for m=0:n
x=1.+.1^(ix)
SSZZ1(n,m,x,ESTOP)
end
end
println(" ")
n=80
ESTOP=.000000000001 # e-12
for ix=1:7
for m=0:n
x= 1.+ (.1)^(ix)
SSZZ1(n,m,x,ESTOP)
end
end
"""
function TableSSZZ(n,m,x,T)
compare SSLegendreP3,ZZLegendreP3 and Table1 value is T
with and without arbitrary precision to
Table 1 from Computer Physics Comm. 181 (2010)2091-7
User has the option to accept reduced accuracy for certain
values of n,m,x or to increase the accuracy by using
higher values of precision in arbitrary precision arithmetic
"""
function TableSSZZ(n,m,x,T)
valueZZ=Float64(ZZLegendreP3(n,m,big(x))) #higher precision
#valueS=Float64(SLegendreP3(n,m,big(x)))
valueSS=Float64(SSLegendreP3(n,m,big(x)))
valuezz=ZZLegendreP3(n,m,x)
#valuess=SSLegendreP3(n,m,x)
zzrerr=abs((valuezz-T)/T)
ZZrerr=abs((valueZZ-T)/T)
println()
println("n=$n, m=$m, x=$x")
println("SS=$valueSS,ZZ=$valueZZ, T=$T ,zz=$valuezz " )
# println("SS=$valueSS,ZZ=$valueZZ, T=$T , n= $n, m= $m, x= $x")
# println(" ZZrerr=$ZZrerr, ss=$valuess,zz=$valuezz, zzrerr=$zzrerr")
println(" ZZrerr=$ZZrerr, zzrerr=$zzrerr")
end
x=5.0
m=0
n=0
T=1.0
x=5.0
m=0
n=0
T=1.0
TableSSZZ(n,m,x,T)
n=1
T=5.0
TableSSZZ(n,m,x,T)
n=2
T=37.0
TableSSZZ(n,m,x,T)
n=3
T=305.
TableSSZZ(n,m,x,T)
n=4
T=2641.
TableSSZZ(n,m,x,T)
m=1
n=1
T=4.898979485566
TableSSZZ(n,m,x,T)
n=2
T=73.4846922835
TableSSZZ(n,m,x,T)
n=3
T=9.112101843153e2
TableSSZZ(n,m,x,T)
n=4
T=1.053280589397e4
TableSSZZ(n,m,x,T)
m=2
n=2
T=72.
TableSSZZ(n,m,x,T)
n=3
T=1800.
TableSSZZ(n,m,x,T)
n=4
T=3.132e4
TableSSZZ(n,m,x,T)
m=3
n=3
T=1.763632614804e3
TableSSZZ(n,m,x,T)
n=4
T=6.172714151814e4
TableSSZZ(n,m,x,T)
m=4
n=4
T=6.048e4
TableSSZZ(n,m,x,T)
x=2.0
m=0
n=0
T=1.0
TableSSZZ(n,m,x,T)
n=1
T=2.0
TableSSZZ(n,m,x,T)
n=2
T=5.5
TableSSZZ(n,m,x,T)
n=3
T=17.
TableSSZZ(n,m,x,T)
n=4
T=55.375
TableSSZZ(n,m,x,T)
m=1
n=1
T=1.732050807569
TableSSZZ(n,m,x,T)
n=2
T=1.039230484541e1
TableSSZZ(n,m,x,T)
n=3
T=4.936344801571e1
TableSSZZ(n,m,x,T)
n=4
T=2.165063509461e2
TableSSZZ(n,m,x,T)
m=2
n=2
T=9.0
TableSSZZ(n,m,x,T)
n=3
T=90.
TableSSZZ(n,m,x,T)
n=4
T=607.5
TableSSZZ(n,m,x,T)
m=3
n=3
T=7.794228634060e1
TableSSZZ(n,m,x,T)
n=4
T=1.091192008768e3
TableSSZZ(n,m,x,T)
m=4
n=4
T=945.0
TableSSZZ(n,m,x,T)
x=1.000001
m=0
n=0
T=1.0
TableSSZZ(n,m,x,T)
n=1
T=1.0000010
TableSSZZ(n,m,x,T)
n=2
T=1.000003000001
TableSSZZ(n,m,x,T)
n=3
T=1.000006000007
TableSSZZ(n,m,x,T)
n=4
T=1.000010000022
TableSSZZ(n,m,x,T)
m=1
n=1
T=1.414213915900e-3
TableSSZZ(n,m,x,T)
n=2
T=4.242645990341e-3
TableSSZZ(n,m,x,T)
n=3
T=8.485304708618e-3
TableSSZZ(n,m,x,T)
n=4
T=1.414220279870e-2
TableSSZZ(n,m,x,T)
m=2
n=2
T=6.000002999773e-6
TableSSZZ(n,m,x,T)
n=3
T=3.000004499888e-5
TableSSZZ(n,m,x,T)
n=4
T=9.000025499681e-5
TableSSZZ(n,m,x,T)
m=3
n=3
T=4.242643868860e-8
TableSSZZ(n,m,x,T)
n=4 #underflow
T=2.969853678052e-7
TableSSZZ(n,m,x,T)
m=4 #underflow
n=4
T=4.200004199683e-10
TableSSZZ(n,m,x,T)
|
Isn't BTW, you should be careful with using |
pj1=x*(2.*m+1.)*pj2 If x is BigFloat, then so is pj1 Thanks for reminding me to use 1.0 to avoid mistakes. |
What about if |
Float32 multiplied by Float64 gives Float64. Float32 multiplied by integer gives Float32. So if I change the stuff in parentheses to integers this might be OK. There are about 6 more places that might be affected by Float32 inputs , so I will change and resubmit. Thanks much. |
This PR is the file entitled associatedLegendre.jl. The first part with all the comments is like a readme. The rest is the source code and numerous tests(requested) and exploration of area near |x| ~ 1. As requested @Btime from BenchmarkTools as well as @time gave similar results in that ZZLegendreP2 is light years ahead of scipy.special.lpmv. Accuracy of ZZLegendreP2 (|z|=<1.) against lpmv and ZZLegendreP3 (z>1.) against Fortran is good.
delete
@elaineVRC |
As I commented in #267, I feel like there should be a separate package for special polynomials, as opposed to transcendental special functions. |
To Misha Mikhasenko ,
This was my first PR.
It was unsolicited.
I did provide tests and comparison to other implementations.
If you cannot find them, I will dig into my publications and files.
Are you calculating the multiple sum of the product of
Clebsch-Gordan coefficients multiplied
by associated Legendre polynomials or something like this ?
from elaineVRC
…On 11/15/20, Misha Mikhasenko ***@***.***> wrote:
@elaineVRC
what is the status of this PR? From the first comment of @stevengj .
Are there tests, comparison to other implementations already?
--
You are receiving this because you were mentioned.
Reply to this email directly or view it on GitHub:
#24 (comment)
|
To Misha Mikhasenko ,
This was my first PR.
It was unsolicited.
I did provide tests and comparison to other implementations.
If you cannot find them, I will dig into my publications and files.
Are you calculating the multiple sum of the product of
Clebsch-Gordan coefficients multiplied
by associated Legendre polynomials or something like this ?
from elaineVRC
…On Sun, Nov 15, 2020 at 5:53 AM Misha Mikhasenko ***@***.***> wrote:
@elaineVRC <https://github.com/elaineVRC>
what is the status of this PR? From the first comment of @stevengj
<https://github.com/stevengj> .
Are there tests, comparison to other implementations already?
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#24 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AGFM62MYSLFCZ23XV6VEQ2DSP7MMPANCNFSM4DCZXLGQ>
.
|
Julia file that calculates some associated Legendre functions