Skip to content

Official code implementation forour 2022 Automation in Construction paper "Multi-Scale Hybrid Vision Transformer and Sinkhorn Tokenizer for Sewer Defect Classification"

License

Notifications You must be signed in to change notification settings

JoakimHaurum/MSHViT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Scale Hybrid Vision Transformer and Sinkhorn Tokenizer for Sewer Defect Classification

This repository is the official implementation of Multi-Scale Hybrid Vision Transformer and Sinkhorn Tokenizer for Sewer Defect Classification.

The MSHViT project page can be found here.

Requirements

The main packages needed are listed below:

  • Pytorch 1.8.1
  • Torchvision 0.9.1
  • Pytorch-Lightning 1.3.7
  • torchmetrics 0.3.2
  • Pandas 1.3.5
  • Numpy 1.20.2
  • inplace-abn 1.1.0
  • wandb 0.12.9
  • einops 0.4.1

The Sewer-ML dataset can be accessed after filling out this Google Form. The Sewer-ML dataset is licensed under the Creative Commons BY-NC-SA 4.0 license.

Training

When training the images are normalized with the following mean and standard deviation:

  • mean = [0.523, 0.453, 0.345]
  • std = [0.210, 0.199, 0.154]

The models can be trained in two variations: with and without the MSHViT Head. The variation share trainer script, and is selected through the head_model argument

trainer.py --precision 16 --batch_size 256 --max_epochs 40 --gpus 1 --img_size 224 --ann_root <path_to_annotations> --data_root <path_to_data> --deterministic --backbone_model resnet50 --head_model BaseHead --sigmoid_loss --model_ema --monitor_metric --wandb_project <wandb_project> --wandb_group <wandb_group> --progress_bar_refresh_rate 1000 --flush_logs_every_n_steps 1000 --log_every_n_steps 1 --log_save_dir <path_to_model_logs>
trainer.py --precision 16 --batch_size 256 --max_epochs 40 --gpus 1 --img_size 224 --ann_root <path_to_annotations> --data_root <path_to_data>  --deterministic --backbone_model resnet50 --head_model MultiScaleViTHead --token_dim 512 --transformer_depth 2 --block_drop 0. --tokenizer_layer Sinkhorn --block_type FNetBlock --use_pos_embed --num_heads 8 --qkv_bias --mlp_ratio 4. --proj_drop 0. --attn_drop 0. --pos_embed_drop 0. --cross_num_heads 8 --cross_qkv_bias --cross_proj_drop 0. --cross_attn_drop 0. --cross_block_drop 0. --num_cluster 64 --sinkhorn_eps 0.25 --sinkhorn_iters 5 --l2_normalize --backbone_feature_maps layer3 layer4 --shared_tower --multiscale_method CrossScale-Token --sigmoid_loss --model_ema --monitor_metric --wandb_project <wandb_project> --wandb_group <wandb_group> --progress_bar_refresh_rate 1000 --flush_logs_every_n_steps 1000 --log_every_n_steps 1 --log_save_dir <path_to_model_logs>

Evaluation

To evaluate a set of models on the validation set of the Sewer-ML dataset, first the raw predictions for each image should be generated, which is subsequently compared to the ground truth. The raw predictions should be probabilities.

When the predictions have been obtained the performance of the model can be determined using the calculate_results.py script.

python calculate_results.py --output_path <path_to_metric_results> --split <dataset_split_to_use> --score_path <path_to_predictions> --gt_path <path_to_annotations>

Raw predictions are obtained with the inference.py script, assuming the weights have been transformed from the pytorch lightning format to a simplified format using the extract_weights.py script. EMA weights can be used by passing the use_ema flag.

python inference.py --ann_root <path_to_annotations> --data_root <path_to_data> --results_output <path_to_results> --model_path <path_to_models> --split <dataset_split_to_use>

Pre-trained Models

You can download pretrained models here:

  • Model Repository trained on Sewer-ML using the parameters described in the paper.

Each model weight file consists of a dict with the model state_dicts and the necessary model hyper_parameters.

Code Credits

Parts of the code builds upon prior work:

Contributing

The Code is licensed under an MIT License, with exceptions of the BoTNet, TResNet, CoAtNet, Sinkhorn, and timm code which follows the license of the original authors.

The Sewer-ML Dataset follows the Creative Commons Attribute-NonCommerical-ShareAlike 4.0 (CC BY-NC-SA 4.0) International license.

Bibtex

@article{Haurum_2022_AiC,
author = {Joakim Bruslund Haurum and Meysam Madadi and Sergio Escalera and Thomas B. Moeslund},
title = {Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification},
journal = {Automation in Construction},
volume = {144},
pages = {104614},
year = {2022},
issn = {0926-5805},
doi = {https://doi.org/10.1016/j.autcon.2022.104614},
}

About

Official code implementation forour 2022 Automation in Construction paper "Multi-Scale Hybrid Vision Transformer and Sinkhorn Tokenizer for Sewer Defect Classification"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages