- 2024.12.30 Release code.
- 2024.12.22 Release training data.
- 2024.11.17 ABIL is accepted by KDD 2025!
🚧 This repository is under construction 🚧 -- Please check back for updates!
- Clone the repo into a local folder.
git clone https://github.com/Hoar012/ABIL-KDD-2025.git
cd ABIL-KDD-2025
conda create -n ABIL python=3.8
conda activate ABIL
pip install -r requirements.txt
- Clone the Jacinle repo.
git clone https://github.com/vacancy/Jacinle --recursive
export PATH=<path_to_jacinle>/bin:$PATH
cd ./hacl/envs/mini_behavior
pip install -e .
cd ./hacl/envs/cliport
export CLIPORT_ROOT=$(pwd)
python setup.py develop
Our training demonstrations are generated by Python scripts. View them separately in the following files:
- BabyAI:
hacl/p/kfac/minigrid/data_generator.py
- Mini-BEHAVIOR:
hacl/p/kfac/minibehavior/data_generator.py
- CLIPort:
cliport_src/data_generator.py
BabyAI
- Train the grounding model.
jac-run babyai_src/train-babyai-abl.py minigrid goto --use-offline=yes --structure-mode abl --action-loss-weight 1 --evaluate-interval 0 --iterations 1000 --append-expr
- Train the Imitation Learning model.
jac-run babyai_src/babyai-abil-bc.py minigrid goto --seed 33 --iterations 1000 --append-expr --load_domain dumps/abl-unlock33-load=scratch.pth
jac-run babyai_src/babyai-abil-bc.py minigrid goto --seed 33 --iterations 1000 --append-expr --load_domain dumps/abl-unlock33-load=scratch.pth --load dumps/seed33/abil-bc-goto-load=scratch.pth --evaluate
@misc{shao2024learninglonghorizonplanningneurosymbolic,
title={Learning for Long-Horizon Planning via Neuro-Symbolic Abductive Imitation},
author={Jie-Jing Shao and Hao-Ran Hao and Xiao-Wen Yang and Yu-Feng Li},
year={2024},
eprint={2411.18201},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2411.18201},
}