-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:Exabyte-io/utils
- Loading branch information
Showing
2 changed files
with
217 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import plotly.graph_objs as go | ||
from plotly.subplots import make_subplots | ||
from IPython.display import display | ||
|
||
|
||
def scatter_plot_2d( | ||
x_values: List[float], | ||
y_values: List[float], | ||
hover_texts: List[str], | ||
settings: Dict[str, Any], | ||
trace_names: Optional[List[str]] = None, | ||
) -> go.Figure: | ||
""" | ||
Create a generic 2D scatter plot. | ||
Args: | ||
x_values: List of x-coordinates | ||
y_values: List of y-coordinates | ||
hover_texts: List of hover texts for each point | ||
settings: Plot settings including scales, height, and titles | ||
trace_names: Optional list of names for each trace | ||
""" | ||
data = [] | ||
for i in range(len(x_values)): | ||
trace = go.Scatter( | ||
x=[x_values[i]], | ||
y=[y_values[i]], | ||
text=[hover_texts[i]], | ||
mode="markers", | ||
hoverinfo="text", | ||
name=trace_names[i] if trace_names else f"Point {i}", | ||
) | ||
data.append(trace) | ||
|
||
layout = go.Layout( | ||
xaxis=dict(title=settings.get("x_title", "X"), type=settings.get("x_scale", "linear")), | ||
yaxis=dict(title=settings.get("y_title", "Y"), type=settings.get("y_scale", "linear")), | ||
hovermode="closest", | ||
height=settings.get("height", 600), | ||
title=settings.get("title", ""), | ||
legend_title_text=settings.get("legend_title", ""), | ||
) | ||
|
||
return go.Figure(data=data, layout=layout) | ||
|
||
|
||
def create_realtime_plot( | ||
title: str = "Real-time Progress", x_label: str = "Step", y_label: str = "Value" | ||
) -> go.FigureWidget: | ||
""" | ||
Create a real-time updating plot. | ||
""" | ||
fig = make_subplots(rows=1, cols=1, specs=[[{"type": "scatter"}]]) | ||
scatter = go.Scatter(x=[], y=[], mode="lines+markers", name="Progress") | ||
fig.add_trace(scatter) | ||
fig.update_layout(title_text=title, xaxis_title=x_label, yaxis_title=y_label) | ||
widget = go.FigureWidget(fig) | ||
display(widget) # Automatically display the widget | ||
return widget | ||
|
||
|
||
def create_update_callback( | ||
dynamic_object: Any, | ||
value_getter: Union[Callable, Any], | ||
figure: go.FigureWidget, | ||
steps: List[int], | ||
values: List[float], | ||
step_attr: str = "nsteps", | ||
print_format: str = "Step: {}, Value: {:.4f}", | ||
) -> Callable: | ||
""" | ||
Create a general update callback for real-time plotting. | ||
Args: | ||
dynamic_object: Object containing step information | ||
value_getter: Either a callable function or an object with a getter method | ||
figure: Plotly figure widget to update | ||
steps: List to store step values | ||
values: List to store measured values | ||
step_attr: Attribute name for step count in dynamic_object | ||
print_format: Format string for progress printing | ||
""" | ||
|
||
def update(): | ||
step = getattr(dynamic_object, step_attr) | ||
# Handle both callable and object with getter method | ||
value = value_getter() if callable(value_getter) else value_getter.get_total_energy() | ||
|
||
steps.append(step) | ||
values.append(value) | ||
|
||
print(print_format.format(step, value)) | ||
with figure.batch_update(): | ||
figure.data[0].x = steps | ||
figure.data[0].y = values | ||
|
||
return update | ||
|
||
|
||
def plot_distribution_function( | ||
bin_centers: np.ndarray, | ||
distribution: np.ndarray, | ||
xlabel: str = "Distance", | ||
ylabel: str = "g(r)", | ||
title: str = "Distribution Function", | ||
figsize: Tuple[int, int] = (8, 5), | ||
) -> None: | ||
""" | ||
Plot a generic distribution function. | ||
Args: | ||
bin_centers: The bin centers. | ||
distribution: The distribution values. | ||
xlabel: The x-axis label. | ||
ylabel: The y-axis label. | ||
title: The title of the plot. | ||
figsize: The size of the figure. | ||
""" | ||
plt.figure(figsize=figsize) | ||
plt.plot(bin_centers, distribution, label=title) | ||
plt.xlabel(xlabel) | ||
plt.ylabel(ylabel) | ||
plt.title(title) | ||
plt.legend() | ||
plt.grid() | ||
plt.show() | ||
|
||
|
||
def plot_3d_surface( | ||
x_matrix: np.ndarray, | ||
y_matrix: np.ndarray, | ||
z_matrix: np.ndarray, | ||
optimal_point: Optional[Tuple[float, float]] = None, | ||
title: str = "Surface Plot", | ||
labels: Optional[Dict[str, str]] = None, | ||
) -> None: | ||
""" | ||
Create a 3D surface plot with optional optimal point. | ||
Args: | ||
x_matrix: The x-axis matrix. | ||
y_matrix: The y-axis matrix. | ||
z_matrix: The z-axis matrix. | ||
optimal_point: The optimal point to highlight. | ||
title: The title of the plot. | ||
labels: The labels for the axes. | ||
""" | ||
if labels is None: | ||
labels = {"x": "X", "y": "Y", "z": "Z"} | ||
|
||
fig = go.Figure(data=[go.Surface(x=x_matrix, y=y_matrix, z=z_matrix, colorscale="Viridis")]) | ||
|
||
if optimal_point is not None: | ||
x_opt, y_opt = optimal_point | ||
z_opt = np.min(z_matrix) | ||
fig.add_trace( | ||
go.Scatter3d( | ||
x=[x_opt], y=[y_opt], z=[z_opt], mode="markers", marker=dict(size=8, color="red"), name="Optimal Point" | ||
) | ||
) | ||
|
||
fig.update_layout( | ||
title=title, | ||
scene=dict(xaxis_title=labels["x"], yaxis_title=labels["y"], zaxis_title=labels["z"]), | ||
width=800, | ||
height=800, | ||
) | ||
fig.show() | ||
|
||
|
||
def plot_2d_heatmap( | ||
x_values: np.ndarray, | ||
y_values: np.ndarray, | ||
z_matrix: np.ndarray, | ||
optimal_point: Optional[Tuple[float, float]] = None, | ||
title: str = "Heatmap", | ||
labels: Optional[Dict[str, str]] = None, | ||
) -> None: | ||
""" | ||
Create a 2D heatmap with optional optimal point. | ||
Args: | ||
x_values: The x-axis values. | ||
y_values: The y-axis values. | ||
z_matrix: The z-axis matrix. | ||
optimal_point: The optimal point to highlight. | ||
title: The title of the plot. | ||
labels: The labels for the axes. | ||
""" | ||
if labels is None: | ||
labels = {"x": "X", "y": "Y", "z": "Z"} | ||
|
||
fig = go.Figure( | ||
data=go.Heatmap(x=x_values, y=y_values, z=z_matrix, colorscale="Viridis", colorbar=dict(title=labels["z"])) | ||
) | ||
|
||
if optimal_point is not None: | ||
x_opt, y_opt = optimal_point | ||
fig.add_trace( | ||
go.Scatter( | ||
x=[x_opt], | ||
y=[y_opt], | ||
mode="markers", | ||
marker=dict(size=12, color="red", symbol="x"), | ||
name="Optimal Point", | ||
) | ||
) | ||
|
||
fig.update_layout(title=title, xaxis_title=labels["x"], yaxis_title=labels["y"], width=800, height=600) | ||
fig.show() |