-
Notifications
You must be signed in to change notification settings - Fork 126
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #756 from GangBean/main
[GangBean] Week 3
- Loading branch information
Showing
5 changed files
with
186 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
class Solution { | ||
public List<List<Integer>> combinationSum(int[] candidates, int target) { | ||
/** | ||
1. understanding | ||
- find all combinations, which sum to target | ||
- can use same number multiple times | ||
2. strategy | ||
- dp[target]: all combination, which sum to target | ||
- dp[n + 1] = dp[n] | dp[1] | ||
- [2,3,6,7], target = 7 | ||
- dp[0] = [[]] | ||
- dp[1] = [[]] | ||
- dp[2] = [[2]] | ||
- dp[3] = [[3]] | ||
- dp[4] = dp[2] | dp[2] = [[2,2]] | ||
- dp[5] = dp[2] | dp[3] = [[2,3]] | ||
- dp[6] = dp[2] | dp[4] , dp[3] | dp[3] = [[2,2,2], [3,3]] | ||
- dp[7] = dp[2] | dp[5], dp[3] | dp[4], dp[6] | dp[1], dp[7] = [[2,2,3],] | ||
3. complexity | ||
- time: O(target * N) where N is length of candidates | ||
- space: O(target * N) | ||
*/ | ||
List<List<Integer>>[] dp = new List[target + 1]; | ||
for (int i = 0; i <= target; i++) { | ||
dp[i] = new ArrayList<>(); | ||
} | ||
|
||
dp[0].add(new ArrayList<>()); | ||
|
||
for (int candidate : candidates) { | ||
for (int i = candidate; i <= target; i++) { | ||
for (List<Integer> combination : dp[i - candidate]) { | ||
List<Integer> newCombination = new ArrayList<>(combination); | ||
newCombination.add(candidate); | ||
dp[i].add(newCombination); | ||
} | ||
} | ||
} | ||
|
||
return dp[target]; | ||
} | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
class Solution { | ||
public int maxSubArray(int[] nums) { | ||
/** | ||
1. understanding | ||
- integer array nums | ||
- find largest subarray sum | ||
2. starategy | ||
- calculate cumulative sum | ||
- mem[i+1] = num[i+1] + mem[i] if (num[i+1] + mem[i] >= 0) else num[i+1] | ||
3. complexity | ||
- time: O(N) | ||
- space: O(1) | ||
*/ | ||
int prev = 0; | ||
int curr = 0; | ||
int max = Integer.MIN_VALUE; | ||
for (int i = 0 ; i < nums.length; i++) { | ||
curr = nums[i]; | ||
if (prev >= 0) { | ||
curr += prev; | ||
} | ||
max = Math.max(max, curr); | ||
prev = curr; | ||
} | ||
return max; | ||
} | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
class Solution { | ||
public int[] productExceptSelf(int[] nums) { | ||
/** | ||
1. understanding | ||
- given integer array nums | ||
- product of which's all elements except that element | ||
- should be under O(N) time complexity | ||
- should not use division operation | ||
2. strategy | ||
- brute force: O(n^2) | ||
- for every elements, calculate product of other elements | ||
- 1: 2 * [3 * 4] | ||
- 2: 1 * [3 * 4] | ||
- 3: [1 * 2] * 4 | ||
- 4: [1 * 2] * 3 | ||
- dynamic programming | ||
- assign array mem to memorize product till that idx | ||
- mem memorize in ascending order product value and reverse order product value | ||
3. complexity | ||
- time: O(N) | ||
- space: O(N) | ||
*/ | ||
// 1. assign array variable mem | ||
int[][] mem = new int[nums.length][]; | ||
for (int i = 0 ; i < nums.length; i++) { | ||
mem[i] = new int[2]; | ||
} | ||
|
||
// 2. calculate product values | ||
for (int i = 0 ; i < nums.length; i++) { // O(N) | ||
if (i == 0) { | ||
mem[i][0] = nums[i]; | ||
continue; | ||
} | ||
mem[i][0] = nums[i] * mem[i-1][0]; | ||
} | ||
|
||
for (int i = nums.length - 1; i >= 0; i--) { // O(N) | ||
if (i == nums.length - 1) { | ||
mem[i][1] = nums[i]; | ||
continue; | ||
} | ||
mem[i][1] = nums[i] * mem[i+1][1]; | ||
} | ||
|
||
int[] ret = new int[nums.length]; | ||
for (int i = 0; i < nums.length; i++) { // O(N) | ||
int left = (i - 1) >= 0 ? mem[i-1][0] : 1; | ||
int right = (i + 1) < nums.length ? mem[i+1][1] : 1; | ||
ret[i] = left * right; | ||
} | ||
|
||
return ret; | ||
} | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
public class Solution { | ||
// you need treat n as an unsigned value | ||
public int reverseBits(int n) { | ||
/** | ||
1. understanding | ||
- return the reversed 32 bit input num | ||
2. strategy | ||
- assign stack | ||
- iterate until stack.size is 32 | ||
- push value % 2, and value /= 2 | ||
3. complexity | ||
- time: O(1) | ||
- space: O(1) | ||
*/ | ||
int reversed = 0; | ||
for (int i = 0; i < 32; i++) { | ||
reversed <<= 1; | ||
reversed |= n & 1; | ||
n >>= 1; | ||
} | ||
return reversed; | ||
} | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
class Solution { | ||
public int[] twoSum(int[] nums, int target) { | ||
/** | ||
1. understanding | ||
- find the indices where the numbers of that index pair sum upto the target number. | ||
- exactly one solution | ||
- use each element only once | ||
- return in any order | ||
2. strategy | ||
- brute force: | ||
- validate for all pair sum | ||
- hashtable: | ||
- assing hashtable variable to save the nums and index | ||
- while iterate over the nums, | ||
- calculate the diff, and check if the diff in the hashtable. | ||
- or save new entry. | ||
3. complexity | ||
- time: O(N) | ||
- space: O(N) | ||
*/ | ||
|
||
Map<Integer, Integer> map = new HashMap<>(); | ||
|
||
for (int i = 0; i < nums.length; i++) { | ||
int diff = target - nums[i]; | ||
if (map.containsKey(diff)) { | ||
return new int[] {map.get(diff), i}; | ||
} | ||
map.put(nums[i], i); | ||
} | ||
|
||
return new int[] {}; | ||
} | ||
} | ||
|