Skip to content

Commit

Permalink
DOC: describe main formulas from JPAC:2019ufm (#37)
Browse files Browse the repository at this point in the history
  • Loading branch information
redeboer authored Jan 13, 2023
1 parent 441a6ea commit 2242d1b
Show file tree
Hide file tree
Showing 5 changed files with 129 additions and 0 deletions.
5 changes: 5 additions & 0 deletions .cspell.json
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,8 @@
"concat",
"docnb",
"elif",
"eqnarray",
"eqref",
"figsize",
"fontsize",
"gcov",
Expand Down Expand Up @@ -115,6 +117,7 @@
"textwrap",
"toctree",
"tqdm",
"unsrt",
"venv",
"wspace",
"xlabel",
Expand All @@ -140,9 +143,11 @@
"Gordan",
"helicities",
"helicity",
"JPAC",
"lambdify",
"lambdifying",
"LHCb",
"lineshape",
"lineshapes",
"matplotlib",
"NumPy",
Expand Down
4 changes: 4 additions & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,9 @@ def generate_api() -> None:
autodoc_typehints_format = "short"
autosectionlabel_prefix_document = True
autosectionlabel_maxdepth = 2
bibtex_bibfiles = [
"references.bib",
]
codeautolink_concat_default = True
copyright = "2022"
default_role = "py:obj"
Expand All @@ -102,6 +105,7 @@ def generate_api() -> None:
"sphinx_copybutton",
"sphinx_design",
"sphinx_togglebutton",
"sphinxcontrib.bibtex",
]
html_sourcelink_suffix = ""
html_theme = "sphinx_book_theme"
Expand Down
103 changes: 103 additions & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,100 @@ where you should replace the `3.x` with the version of Python you want to use.

<!-- cspell:ignore pkpi -->

## Physics

Dalitz-plot decomposition allows us to separate variables that affect the <font color=RoyalBlue>angular distribution</font> from variables that describe the <font color=Orange>dynamics</font>. It allows rewriting a **transition amplitude**&nbsp;$T$ as

$$
T^{\Lambda}_{\{\lambda\}}(\alpha,\beta,\gamma; \{\sigma\}) = \sum_{\nu}
{\color{RoyalBlue} D_{\Lambda,\nu}^{J}(\alpha,\beta,\gamma)}
\,
{\color{Orange} O^\nu_{\{\lambda\}}(\{\sigma\})}.
$$

Here, $\Lambda$ and $\nu$ indicate the allowed spin projections of the initial state, $\{\lambda\}$ are the allowed spin projections of the final state (e.g. $\{\lambda\}=\lambda_1,\lambda_3,\lambda_3$ for a three-body decay), The Euler angles $\alpha,\beta,\gamma$ are obtained by choosing a specific aligned center-of-momentum frame ("aligned CM"), see Fig.&nbsp;2 in Ref&nbsp;{cite}`JPAC:2019ufm`, which gives us an "aligned" transition amplitude $O^\nu_{\{\lambda\}}$ that only depends on dynamic variables $\{\sigma\}$ (in the case of a three-body decay, the three Mandelstam variables $\sigma_1,\sigma_2,\sigma_3$).

These aligned transition amplitudes are then combined into an observable **differential cross section** (intensity distribution) using a spin density matrix $\rho_{_{\Lambda,\Lambda'}}$ for the spin projections $\Lambda$ of the initial state,

:::{container} full-width

$$
\mathrm{d}\sigma/\mathrm{d}\Phi_3 = N
\sum_{\Lambda,\Lambda'} \rho_{_{\Lambda,\Lambda'}}
\sum_{\nu,\nu'} {\color{RoyalBlue}
D^{J^*}_{\Lambda,\nu}\left(\alpha,\beta,\gamma\right)
D^{J}_{\Lambda',\nu'}\left(\alpha,\beta,\gamma\right)
}
\sum_{\{\lambda\}} {\color{Orange}
O^\nu_{\{\lambda\}}\left(\{\sigma\}\right)
O^{\nu'*}_{\{\lambda\}}\left(\{\sigma\}\right)
}.
$$

:::

Given the right alignment, the aligned transition amplitude can be written as

<!-- prettier-ignore-start -->

````{math}
---
label: aligned-amplitude
---
\begin{eqnarray*}
{\color{Orange}O^\nu_{\{\lambda\}}\left(\{\sigma\}\right)} &=&
\sum_{(ij)k}
\sum^{(ij)\to i,j}_s
\sum_\tau
\sum_{\{\lambda'\}}
\; {\color{Orange}X_s\!\left(\sigma_k\right)}
\\ {\color{LightGray}\text{production:}} && \quad \times\;```
\eta_J\,
d^J_{\nu,\tau-\lambda'_k}\!\left(\hat\theta_{k(1)}\right)\,
H^{0\to(ij),k}_{\tau,\lambda_k'}
\\ {\color{LightGray}\text{decay:}} && \quad \times\;
\eta_s\,
d^s_{\tau,\lambda'_i-\lambda_j'}\!\left(\theta_{ij}\right)\,
H^{(ij)\to i,j}_{\lambda'_i,\lambda'_j}
\\ {\color{LightGray}\text{rotations:}} && \quad \times\;
d^{j_1}_{\lambda'_1,\lambda_1}\!\left(\zeta^1_{k(0)}\right)\,
d^{j_2}_{\lambda'_2,\lambda_2}\!\left(\zeta^2_{k(0)}\right)\,
d^{j_3}_{\lambda'_3,\lambda_3}\!\left(\zeta^3_{k(0)}\right)
\end{eqnarray*}
````

Notice the general structure:

- **Summations**: The outer sum is taken over the three decay chain combinations $(ij)k \in \left\{(23)1, (31)2, (12)3\right\}$. Next, we sum over the spin magnitudes&nbsp;$s$ of all resonances[^1], the corresponding allowed helicities&nbsp;$\tau$, and allowed spin projections&nbsp;$\{\lambda'\}$ of the final state.
- **Dynamics**: The function $X_s$ only depends on a single Mandelstam variable and carries all the dynamical information about the decay chain. Typically, these are your $K$-matrix or Breit-Wigner lineshape functions.
- **Isobars**: There is a Wigner&nbsp;$d$-function and a helicity coupling $H$ for each isobar in the three-body decay chain: the $0\to(ij),k$ production node and the $(ij)\to i,j$ decay node. The argument of these Wigner&nbsp;$d$-functions are the polar angles. The factors $\eta_J=\sqrt{2S+1}$ and $\eta_s=\sqrt{2s+1}$ are normalization factors.
- **Wigner rotations**: The last three Wigner&nbsp;$d$-functions represent Wigner rotations that appear when rotating the boosted frames of the production and decay isobar amplitudes back to the space-fixed CM frame.

If $k=1$, we have $\hat\theta_{k(1)}=0$, so the Wigner&nbsp;$d$ function for the production isobar reduces to a Kronecker delta, $d^J_{\nu,\tau-\lambda'_k}\!\left(\hat\theta_{k(1)}\right) = \delta_{\nu,\tau-\lambda'_k}$.

[^1]: Alternatively, one can sum over all resonances themselves, so that one has a dynamic function&nbsp;$X_\mathcal{R}(\sigma_k)$ for each resonance&nbsp;$\mathcal{R}$ in subsystem&nbsp;$k$.

Equation&nbsp;{eq}`aligned-amplitude` is written in terms of _helicity_ couplings, but can be rewritten in terms of _$LS$ couplings_, using

```{math}
\begin{eqnarray*}
H^{0\to(ij),k}_{\tau,\lambda'_k} & = &
\sum_{LS}
H^{0\to(ij),k}_{LS}
\sqrt{\frac{2L+1}{2J+1}}
C^{S,\tau-\lambda'_k}_{s,\tau,j_k,-\lambda'_k}
C^{J,\tau-\lambda'_k}_{L,0,S,\tau-\lambda'_k} \\
H^{(ij)\to i,j}_{\lambda'_i,\lambda'_j} & = &
\sum_{l's'}
H^{0\to(ij),k}_{l's'}
\sqrt{\frac{2l'+1}{2s+1}}
C^{s',\lambda'_i-\lambda'_j}_{j_i,\lambda'_i,j_j,-\lambda'_j}
C^{s,\lambda'_i-\lambda'_j}_{l',0,s',\lambda'_i-\lambda'_j}\,.
\end{eqnarray*}
```

The dynamics function is dependent on the $LS$&nbsp;values and we write $X_s^{LS;l's'}$ instead of $X_s$.

## Examples

```{toctree}
Expand All @@ -87,3 +181,12 @@ hidden:
---
API <api/ampform_dpd>
```

## Bibliography

```{bibliography} /references.bib
---
style: unsrt
cited:
---
```
16 changes: 16 additions & 0 deletions docs/references.bib
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
@article{JPAC:2019ufm,
title = {Dalitz-Plot Decomposition for Three-Body Decays},
author = {Mikhasenko, M. and Albaladejo, M. and Bibrzycki, Ł. and {Fernandez-Ramirez}, C. and Mathieu, V. and Mitchell, S. and Pappagallo, M. and Pilloni, A. and Winney, D. and Skwarnicki, T. and Szczepaniak, A. P.},
year = {2020},
month = feb,
journal = {Physical Review D: Particles and Fields},
volume = {101},
number = {3},
eprint = {1910.04566},
eprinttype = {arxiv},
pages = {034033},
issn = {2470-0010, 2470-0029},
doi = {10.1103/PhysRevD.101.034033},
url = {https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.034033},
archiveprefix = {arXiv}
}
1 change: 1 addition & 0 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ doc =
sphinx-copybutton
sphinx-design
sphinx-togglebutton
sphinxcontrib-bibtex
tensorwaves[jax]
tqdm
jupyter =
Expand Down

0 comments on commit 2242d1b

Please sign in to comment.