Generalized Autoregressive Conditional Heteroskedastic (GARCH) models for Julia.
- garchFit - estimates parameters of univariate normal GARCH process.
- predict - make n-step prediction using fitted object returned by garchFit
- Jarque-Bera residuals test
- Error analysis
- Package test (compares model parameters and predictions with those obtained using R fGarch)
Analysis of model residuals - currently only Jarque-Bera Test implemented.
- Asymmetric and non-normal GARCH models
- Comprehensive set of residuals tests
estimates parameters of univariate normal GARCH process.
data - data vector
Structure containing details of the GARCH fit with the fllowing fields:
- data - orginal data
- params - vector of model parameters (omega,alpha,beta)
- llh - likelihood
- status - status of the solver
- converged - boolean convergence status, true if constraints are satisfied
- sigma - conditional volatility
- hessian - Hessian matrix
- secoef - standard errors
- tval - t-statistics
make n-step volatility prediction
- fit - fitted object returned by garchFit
- n - the number of time-steps to be forecasted, by default 1
n-step-ahead volatility forecast
using GARCH
using Quandl
quotes = quandl("YAHOO/INDEX_GSPC", format="DataFrame")
ret = diff(log(Array{Float64}(quotes[:Adjusted_Close])))
fit = garchFit(ret)
Andrey Kolev
- T. Bollerslev (1986): Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics 31, 307–327.
- R. F. Engle (1982): Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 50, 987–1008.