A shufflenetv2 and shufflenetv2+ implementations based on tensorflow.
Shufflenet series is a set of brilliant light DNN models that designed for mobile device mainly.
It keeps slightly better accuracy and higher speed than mobilnet series, however there exits no good pretrained model for tensorflow developers.
So the model were converted from the official pytorch repo, with barely no precision loss.
Hope the codes can help you.
-
tensorflow1.14 (tensorflow 1.14 at least if mix_precision turns on)
-
pytorch
-
tensorpack (for data provider)
-
opencv
-
python 3.6
- baidu disk (code fbur)
- google drive
- ShuffleNetV2+
model | top1 err | top5 err |
---|---|---|
ShuffleNetV2+ Small | 25.9 | 8.3 |
ShuffleNetV2+ Medium | 0.000x | 0.000x |
ShuffleNetV2+ Large | 23.0 | 6.6 |
- ShuffleNetV2
model | top1 err | top5 err |
---|---|---|
ShuffleNetV2 0.5x | 38.9 | 17.4 |
ShuffleNetV2 1.0x | 30.7 | 11.2 |
ShuffleNetV2 1.5x | 27.5 | 9.4 |
ShuffleNetV2 2.0x | 24.9 | 7.5 |
ShuffleNetV2_5x5 1.0x | 30.7 | 11.2 |
Ops, somthing exciting happend when i convert the medium model, top1 fucked up, but top5 is fine, i thought there is some numerical problems .
Ps, I though that the other structure listed in the official pytorch repo are not that important for now, so i did not do that work. But i will do it when i got time.
Actully you don't need to train them. It has the same params with the official one.
-
download imagenet
-
use this scripts to prepare val set https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh, then run
python prepare_imagenet.py
produce train.txt and val.txt (if u like train u own data, u should prepare the data like this:path.jpg|label
-
download pretrained model from official repo
-
convert pytorch model and modify config
example ShuffleNetV2+.Small 4.1 run`python convert.py --input ShuffleNetV2+.Small.pth.tar --output ShuffleNetV2+.Small --net_structure ShuffleNetV2_Plus 4.2 modify config as: config.MODEL.net_structure='ShuffleNetV2_Plus' config.MODEL.pretrained_model='ShuffleNetV2+.Small.npy' ##according to your model, config.MODEL.size='Small' ##Small Medium Large for v2+ ##0.5x, 1.0x 1.5x 2.0x for v2 example ShuffleNetV2.0.5x 4.1 run python convert.py --input ShuffleNetV2.0.5x.pth.tar --output ShuffleNetV2.0.5x --net_structure ShuffleNetV2 4.2 modify config as: config.MODEL.net_structure='ShuffleNetV2' config.MODEL.pretrained_model='ShuffleNetV2.0.5x.npy' ##according to your model, config.MODEL.size='0.5x' ##Small Medium Large for v2+ ##0.5x, 1.0x 1.5x 2.0x for v2 example ShuffleNetV2_5x5.1.0x we pad 3x3 as 5x5 with 1 4.1 run python convert.py --input ShuffleNetV2.1.0x.pth.tar --output ShuffleNetV2.1.0x --net_structure ShuffleNetV2_5x5 4.2 modify config as: config.MODEL.net_structure='ShuffleNetV2_5x5' config.MODEL.pretrained_model='ShuffleNetV2.1.0x.npy' ##according to your model, config.MODEL.size='1.0x' ##Small Medium Large for v2+ ##0.5x, 1.0x 1.5x 2.0x for v2
-
then, run:
python train.py
, it will save a ckpt model first. -
python tools/auto_freeze.py
convert to pb
-
download the pretrained model from the link before
-
python eval.py --model shufflenet.pb
python vis.py --input yourimage.jpg --model yourmodel.pb
features=ShufflenetV2Plus(inputs,training_flag,model_size='Small',include_head=False):
by defaut features is a list contains 4 level features, stride as 4,8,16,32