Skip to content

An adapted version of EasyMocap for human motion capture under crowded scenes.

License

Notifications You must be signed in to change notification settings

19reborn/AlphaMocap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AlphaMocap

An adapted version of EasyMocap for my own use. With the help of my adapted version of AlphaPose and some new tricks, this repo is targeted to achieve human motion capture in crowded scenes.


Videos with 42 calibrated and synchronized cameras.

Reconstruction of 3D skeleton with tracking and fitted SMPL.

Data Formats

The data is organized as follows:

<case_name>
|-- videos
    |-- 01.mp4
    |-- 02.mp4
    ...
|-- images
    |-- {camera_id}
        |-- {frames}.jpg
        ...
    ...
|--extri.yml
|--intri.yml

install

SMPL models

This step is the same as smplx.

To download the SMPL model go to this (male and female models, version 1.0.0, 10 shape PCs) and this (gender neutral model) project website and register to get access to the downloads section.

To download the SMPL+H model go to this project website and register to get access to the downloads section.

To download the SMPL-X model go to this project website and register to get access to the downloads section.

Place them as following:

data
└── smplx
    ├── J_regressor_body25.npy
    ├── J_regressor_body25_smplh.txt
    ├── J_regressor_body25_smplx.txt
    ├── J_regressor_mano_LEFT.txt
    ├── J_regressor_mano_RIGHT.txt
    ├── smpl
    │   ├── SMPL_FEMALE.pkl
    │   ├── SMPL_MALE.pkl
    │   └── SMPL_NEUTRAL.pkl
    ├── smplh
    │   ├── MANO_LEFT.pkl
    │   ├── MANO_RIGHT.pkl
    │   ├── SMPLH_FEMALE.pkl
    │   └── SMPLH_MALE.pkl
    └── smplx
        ├── SMPLX_FEMALE.pkl
        ├── SMPLX_MALE.pkl
        └── SMPLX_NEUTRAL.pkl

Requirements

  • MyAlphaPose
  • conda create -n alphamocap python==3.7.0
  • conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
  • pip install -r requirements.txt
  • python3 setup.py develop --user

Running

data=/home/wangyiming/AlphaMocap/dataset/jhd_1min/

conda activate alphapose
python scripts/preprocess/extract_video.py ${data} --mode alphapose --use-video

conda activate alphamocap
python apps/demo/my_mvmp.py ${data} --out ${data}/output --annot annots --cfg config/exp/mvmp1f_test.yml --undis --vis_det --vis_repro --vis3d --vis_match --sub_vis 01 15 25 40

python apps/demo/smpl_from_keypoints.py ${data} --skel ${data}/output/keypoints3d --out ${data}/output/smpl --verbose --opts smooth_poses 1e-1

Common Issues

pyglet.canvas.xlib.NoSuchDisplayException: Cannot connect to "None"

About

An adapted version of EasyMocap for human motion capture under crowded scenes.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published