forked from willylulu/RelGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
executable file
·113 lines (84 loc) · 4.86 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (C) 2019 Willy Po-Wei Wu & Elvis Yu-Jing Lin <[email protected], [email protected]>
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import functools
import tensorflow as tf
import keras
from keras import regularizers
from keras.models import Model, Sequential
from keras.layers import LeakyReLU, Activation, Input, Reshape, Flatten, Dense, Multiply
from keras.layers import Conv2D, Conv2DTranspose, ZeroPadding2D, Lambda, Concatenate, Add
from keras.layers import BatchNormalization, Dropout, Subtract, GlobalAveragePooling2D
from contrib.ops import SwitchNormalization
from ops import *
init_weight = 'he_normal'
res_init_weight = 'he_normal'
regular = None
def tileAttr(x):
x = tf.expand_dims(x, axis = 1)
x = tf.expand_dims(x, axis = 2)
return tf.tile(x, [1, 256, 256, 1])
def tileAttr2(x):
x = tf.expand_dims(x, axis = 1)
x = tf.expand_dims(x, axis = 2)
return tf.tile(x, [1, 4, 4, 1])
def generator(img, attr, size):
concat = Concatenate()([img, Lambda(tileAttr)(attr)])
DownSample = functools.partial(Conv2D, padding="same" , kernel_initializer=init_weight, kernel_regularizer = orthogonal)
UpSample = functools.partial(Conv2DTranspose, padding="same" , kernel_initializer=init_weight, kernel_regularizer = orthogonal)
conv_in = DownSample(64, 7, name="conv_in_conv")(concat)
conv_in = SwitchNormalization(axis=-1, name="conv_in_norm")(conv_in)
conv_in = Activation('relu', name="conv_in_relu")(conv_in)
down1 = DownSample(128, 4, strides=2, name="down1_conv")(conv_in)
down1 = SwitchNormalization(axis=-1, name="down1_norm")(down1)
down1 = Activation('relu', name="down1_relu")(down1)
down2 = DownSample(256, 4, strides=2, name="down2_conv")(down1)
down2 = SwitchNormalization(axis=-1, name="down2_norm")(down2)
down2 = Activation('relu', name="down2_relu")(down2)
resb = residual_block(down2, 256, 3, res_init_weight, 'block1')
resb = residual_block(resb, 256, 3, res_init_weight, 'block2')
resb = residual_block(resb, 256, 3, res_init_weight, 'block3')
encode_out = resb
resb = residual_block(resb, 256, 3, res_init_weight, 'block4')
resb = residual_block(resb, 256, 3, res_init_weight, 'block5')
resb = residual_block(resb, 256, 3, res_init_weight, 'block6')
up2 = UpSample(128, 4, strides=2, name="up2_deconv2")(resb)
up2 = SwitchNormalization(axis=-1, name="up2_norm")(up2)
up2 = Activation('relu', name="up2_relu")(up2)
brid2 = up2
up1 = UpSample(64 , 4, strides=2, name="up1_deconv2")(brid2)
up1 = SwitchNormalization(axis=-1, name="up1_norm")(up1)
up1 = Activation('relu', name="up1_relu")(up1)
brid3 = up1
conv_out = DownSample(3, 7, name="conv_out_conv")(brid3)
conv_out = Activation('tanh', name="conv_out_tanh")(conv_out)
return conv_out, encode_out
def discriminator(imgA, imgB, attr, size, att_size):
filters = [64, 128, 256, 512, 1024, 2048]
convs = [Conv2D(64, 4, strides=2, padding='same', kernel_initializer=init_weight, kernel_regularizer=regular, name="conv1"),
Conv2D(128, 4, strides=2, padding='same', kernel_initializer=init_weight, kernel_regularizer=regular, name="conv2"),
Conv2D(256, 4, strides=2, padding='same', kernel_initializer=init_weight, kernel_regularizer=regular, name="conv3"),
Conv2D(512, 4, strides=2, padding='same', kernel_initializer=init_weight, kernel_regularizer=regular, name="conv4"),
Conv2D(1024, 4, strides=2, padding='same', kernel_initializer=init_weight, kernel_regularizer=regular, name="conv5"),
Conv2D(2048, 4, strides=2, padding='same', kernel_initializer=init_weight, kernel_regularizer=regular, name="conv6")]
#original image
y1 = imgA
for i in range(6):
y1 = convs[i](y1)
y1 = LeakyReLU(alpha=0.01)(y1)
#target image
y2 = imgB
for i in range(6):
y2 = convs[i](y2)
y2 = LeakyReLU(alpha=0.01)(y2)
d_out1 = Conv2D(1, 1, padding='same', kernel_initializer='lecun_normal', kernel_regularizer=regular)(y2)
d_out3 = Conv2D(64, 1, padding='same', kernel_initializer='lecun_normal', kernel_regularizer=regular)(y2)
d_out3 = Lambda(lambda x: K.mean(x, axis=[-1]))(d_out3)
d_out2 = Concatenate()([y1, y2, Lambda(tileAttr2)(attr)])
d_out2 = Conv2D(2048, 1, strides=1, kernel_initializer='lecun_normal', kernel_regularizer=regular)(d_out2)
d_out2 = LeakyReLU(alpha=0.01)(d_out2) # 2 2 2048
d_out2 = Conv2D(1, 1, padding='same', kernel_initializer='lecun_normal', kernel_regularizer=regular)(d_out2)
return d_out1, d_out2, d_out3