-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_overview.py
338 lines (291 loc) · 17.2 KB
/
project_overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import streamlit as st
import altair as alt
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from analysis_functionality.tools.str_analysis import make_experiment_name
import random
from copy import deepcopy
import seaborn as sns
from foldometer.ixo.lumicks_c_trap import process_lumicks_data
from analysis_functionality.wlc_manual_fit.load import get_calibration_from_power_spectrum
folderTeam = "S:/projects"
folderProject = 'S:/projects/Luca/dmMBP'
def project_overview(folderTeam=folderTeam, folderProject=folderProject):
proteinLength = st.sidebar.number_input("protein Length", None, None, 150.)
user = folderProject.split("/")[-2]
humans = [human for human in os.listdir(folderTeam) if "." not in human]
human = st.sidebar.selectbox("Who is the human ?", humans, humans.index(user))
folderProjects = folderTeam + "/" + human
projectAll = [project for project in os.listdir(folderProjects) if "." not in project]
projects = st.sidebar.multiselect("What project ?", projectAll, folderProject.split("/")[-1])
foldersProject = [folderProjects + "/" + project for project in projects]
FUSE_ANALYSED_PROJECT = st.sidebar.checkbox("Fuse sub projects (Run alone)")
SHOW_NUMBERS_OF_FILE = st.sidebar.checkbox("Show numbers of file")
SHOW_NOT_FITTED_DATA = st.sidebar.button("Show not fitted data")
st.sidebar.header("Histograms on each project selected")
HIST_Fu_Lc_DeltaLc = st.sidebar.checkbox("Fu - Lc -DeltaLc")
HIST_Fu_Lc_DeltaLcLinks = st.sidebar.checkbox("Fu - Lc -DeltaLc - links cycle")
HIST_Fu_DeltaLc = st.sidebar.checkbox("Fu - DeltaLc")
HIST_UNFOLDING_LENGTH = st.sidebar.checkbox("Unfolding length")
HIST_REFOLDING_RATE = st.sidebar.checkbox("Refolding rate")
HIST_REFOLDING_RATE_BEFORE_AFTER = st.sidebar.checkbox("Refolding rate 2d, before - after")
HIST_REFOLDING_RATE_BEFORE_DELTA = st.sidebar.checkbox("Refolding rate 2d, before - delta")
if HIST_REFOLDING_RATE:
st.text("It will take value of only refolding from fully unfolded")
thresholdUnfolded = st.number_input("Fully unfolded if x >= ?", None, None, proteinLength*0.7)
st.sidebar.header("Unfolding landscape")
UNFOLDING_PATTERN = st.sidebar.checkbox("Unfolding pattern")
STATE_DENSITY_MAP = st.sidebar.checkbox("State density map")
st.sidebar.header("Compare histogram (run alone)")
COMPARE_1D = st.sidebar.checkbox("1d hist with several data set")
COMPARE_2D = st.sidebar.checkbox("2d hist with several data set")
indexFigure=0
figs = [None for i in range(10000)]
axs = [None for i in range(10000)]
for (folderProject, project) in zip(foldersProject, projects):
folderStepAnalysis = folderProject + "/" + "step_analysis"
folderWlc = folderProject + "/" + "wlc_manual_fit"
folderSave = folderProject + "/" + "project_overview"
# ____________________________________ create the folder where to save ________________________________________
if not os.path.exists(folderSave):
os.mkdir(folderSave)
if not os.path.exists(folderSave+"/"+project):
os.mkdir(folderSave+"/"+project)
st.header("Projects: "+folderProject.split("/")[-1])
# ________________________________________________ File counting ________________________________________________
try:
filesWlcFit = os.listdir(folderWlc)
filesCsvRaw = [filePath for filePath in os.listdir(folderProject+"/csv_raw_data") if "Power Spectrum" not in filePath]
filesStepAnalysed = [filePath for filePath in os.listdir(folderStepAnalysis) if ".csv" in filePath]
filesRaw = list()
for (dirpath, dirnames, filenames) in os.walk(folderProject+"/raw_data"):
filesRaw += [os.path.join(dirpath, file) for file in filenames if (".tdms" in file or ".h5" in file) and "Power Spectrum" not in file and "fluo" not in dirpath and not "_index" in file]
nbRawFile = len(filesRaw)
nbFiles = len(filesWlcFit)
nbCsvRawFile = len(filesRaw)
nbStepAnalyis = len(filesStepAnalysed)
if SHOW_NUMBERS_OF_FILE:
st.text("There are "+str(nbRawFile)+" in raw_data")
st.text("There are "+str(nbCsvRawFile)+" in csv_raw_data")
st.text("There are "+str(nbFiles)+" in wlc_manual_fit")
st.text("There are "+str(nbFiles)+" in step_analysis")
except:
st.warning(folderWlc +" doesn't exist or" +"\n"+folderStepAnalysis +" doesn't exist")
# ____________________________________ Read all step_analysis/XXXX_data.csv ________________________________________
# csvFiles = [fileName[:-4] for fileName in os.listdir(folderProject) if ".csv" in fileName]
# folders = [base for base in os.listdir(folderProject) if os.path.isdir(folderProject+"/"+base)]
namesAll = [name[:-4] for name in os.listdir(folderStepAnalysis) if ".csv" in name]
experiments = list(np.unique([make_experiment_name(name) for name in namesAll]))
if SHOW_NUMBERS_OF_FILE:
experimentsSelected = st.multiselect("Select a subsection of the data (nb exp = "+str(len(experiments))+")", experiments, default=experiments)
else:
experimentsSelected = experiments
experimentDay = np.unique([experiment[:8] for experiment in experimentsSelected])
experimentName = np.unique([experiment[9:] for experiment in experimentsSelected])
names = [name for name in namesAll if name[:8] in experimentDay and name[16:-9] in experimentName]
unfoldingCyclesList = None
for name in names:
if unfoldingCyclesList is None:
unfoldingCyclesList = pd.read_csv(folderStepAnalysis+"/"+name+".csv")
else:
pd.concat([unfoldingCyclesList,pd.read_csv(folderStepAnalysis+"/"+name+".csv")])
columns = ['dataName', 'cycleNumber', 'region', 'deltaLc', 'forceBefore', 'forceAfter', 'lcBefore', 'lcAfter', 'maxSustainableForce', 'time']
unfoldingCyclesList = unfoldingCyclesList[columns]
nbCycles = len(unfoldingCyclesList)
# ____________________________________ Buttons actions ________________________________________
if SHOW_NUMBERS_OF_FILE:
st.text("There are "+str(nbCycles)+" cycle state in the csv of step_analysis")
if SHOW_NOT_FITTED_DATA:
namesCsv = [name[:-4] for name in os.listdir(folderProject+"/"+"csv_raw_data") if "Power Spectrum" not in name]
namesNotFitted = [name for name in namesCsv if name not in names]
for name in namesNotFitted:
st.text(name)
data = pd.read_csv(folderProject+"/"+"csv_raw_data"+"/"+name+".csv")
thermalCalibration = get_calibration_from_power_spectrum(folderProject+"/"+"csv_raw_data", name)
dataProcess = process_lumicks_data(data, thermalCalibration)
figs[indexFigure], axs[indexFigure] = plt.subplots()
plt.plot(dataProcess["surfaceSepX"], dataProcess["forceX"])
st.pyplot(figs[indexFigure])
indexFigure+=1
if HIST_Fu_Lc_DeltaLc:
df = unfoldingCyclesList
mask = df["deltaLc"]>0
maxLc = np.max(unfoldingCyclesList["lcAfter"])
figs[indexFigure], axs[indexFigure] = plt.subplots()
sc = plt.scatter(np.array(df["lcBefore"].loc[mask]), np.array(df["maxSustainableForce"].loc[mask]), s=df["deltaLc"].loc[mask]+1, alpha=0.5)
plt.legend(*sc.legend_elements("sizes", num=6))
plt.xlabel("Contour length (nm)")
plt.ylabel("Unfolding force (pN)")
plt.ylim((0,67))
xmin = st.number_input("xmin", None, None, 0)
xmax = st.number_input("xmax", None, None, df["lcBefore"].loc[mask].max()+10)
plt.xlim((xmin, xmax))
plt.savefig(folderSave+"/"+project+"/"+"lcBefore_UnfoldingForce_UnfoldingLength"+".png")
st.pyplot(figs[indexFigure])
st.text("Nb pulling = "+str(np.sum(mask)))
indexFigure+=1
if HIST_Fu_Lc_DeltaLcLinks:
dfAll = unfoldingCyclesList
dfGroupBy = dfAll.groupby(['cycleNumber'])
figs[indexFigure], axs[indexFigure] = plt.subplots()
mask = (dfAll["deltaLc"]>=0)
maxLc = np.max(unfoldingCyclesList["lcAfter"])
sc = plt.scatter(np.array(dfAll["lcBefore"].loc[mask]), np.array(dfAll["maxSustainableForce"].loc[mask]), s=dfAll["deltaLc"].loc[mask]+1, alpha=0.5)
plt.legend(*sc.legend_elements("sizes", num=6))
# plt.legend(*sc.legend_elements("sizes", num=6))
for cycleNumber,df in dfGroupBy:
plt.plot(df["lcBefore"].loc[mask], df["maxSustainableForce"].loc[mask])
plt.xlabel("Contour length (nm)")
plt.ylabel("Unfolding force (pN)")
plt.ylim((0,67))
xmin = st.number_input("xmin ", None, None, 0)
xmax = st.number_input("xmax ", None, None, dfAll["lcBefore"].loc[mask].max()+10)
plt.xlim((xmin, xmax))
plt.savefig(folderSave+"/"+project+"/"+"lcBefore_UnfoldingForce_UnfoldingLength"+".png")
st.pyplot(figs[indexFigure])
st.text("Nb pulling = "+str(np.sum(mask)))
indexFigure+=1
if HIST_Fu_DeltaLc:
df = unfoldingCyclesList
mask = (df["region"]=="pulling")
maxLc = np.max(unfoldingCyclesList["lcAfter"])
figs[indexFigure], axs[indexFigure] = plt.subplots()
sc = plt.scatter(np.array(df["lcBefore"].loc[mask]), np.array(df["maxSustainableForce"].loc[mask]))
plt.xlabel("Unfolding Length (nm)")
plt.ylabel("Unfolding Force (pN)")
plt.ylim((0,67))
plt.savefig(folderSave+"/"+project+"/"+"unfoldingLength_UnfoldingForce"+".png")
st.pyplot(figs[indexFigure])
st.text("Nb pulling = "+str(np.sum(mask)))
indexFigure+=1
if HIST_UNFOLDING_LENGTH:
figs[indexFigure], axs[indexFigure] = plt.subplots()
mask = unfoldingCyclesList["deltaLc"]>=0
out = plt.hist(unfoldingCyclesList["deltaLc"].loc[mask], color="lightgray", zorder=0)
nbInBins = [int(i) for i in out[0]]
startBins = [int(i) for i in out[1]]
deltaLcList = list(np.sort(unfoldingCyclesList["deltaLc"].loc[mask]))
for nbInBin in nbInBins:
deltaLcTemp = deepcopy(deltaLcList[:nbInBin])
random.shuffle(deltaLcTemp)
for i in range(nbInBin):
plt.scatter(deltaLcTemp.pop(0), i+0.5, marker="x", zorder=1, color="k")
deltaLcList.pop(0)
plt.xlabel("Unfolding Length (nm)")
plt.savefig(folderSave+"/"+project+"/"+"unfolding_length_hist"+".png")
st.pyplot(figs[indexFigure])
indexFigure+=1
if HIST_REFOLDING_RATE:
previousCycleNumber = 0
count = 0
previousUnfolding = None
refoldingLength = []
for i,unfolding in unfoldingCyclesList.iterrows():
if unfolding["cycleNumber"] != previousCycleNumber and previousUnfolding["cycleNumber"]<unfolding["cycleNumber"]:
if previousUnfolding["lcAfter"] >= thresholdUnfolded:
refoldingLength.append(unfolding["lcBefore"])
count += 1
previousUnfolding = unfolding
previousCycleNumber = unfolding["cycleNumber"]
figs[indexFigure], axs[indexFigure] = plt.subplots()
plt.hist(refoldingLength, color="lightgray", zorder=0)
plt.xlabel("Refolding Length (nm)")
plt.savefig(folderSave+"/"+project+"/"+"refolding_rate_hist"+".png")
st.pyplot(figs[indexFigure])
st.text("Nb data = "+str(count))
indexFigure+=1
if HIST_REFOLDING_RATE_BEFORE_AFTER:
previousCycleNumber = 0
count = 0
previousUnfolding = None
lcPulling = []
lcRetract = []
for i,unfolding in unfoldingCyclesList.iterrows():
if unfolding["cycleNumber"] != previousCycleNumber and previousUnfolding["cycleNumber"]<unfolding["cycleNumber"]:
lcPulling.append(unfolding["lcBefore"])
lcRetract.append(previousUnfolding["lcAfter"])
previousUnfolding = unfolding
previousCycleNumber = unfolding["cycleNumber"]
figs[indexFigure], axs[indexFigure] = plt.subplots()
plt.scatter(lcRetract, lcPulling, marker="x", color="k", zorder=0)
plt.plot([0,proteinLength], [0,proteinLength], color="r")
plt.xlim((0,proteinLength))
plt.ylim((0,proteinLength))
plt.xlabel("Lc before refolding (nm)")
plt.ylabel("Lc after refolding (nm)")
plt.savefig(folderSave+"/"+project+"/"+"refolding_rate_lcBefore_lcAfter"+".png")
st.pyplot(figs[indexFigure])
indexFigure+=1
if HIST_REFOLDING_RATE_BEFORE_DELTA:
previousCycleNumber = 0
count = 0
previousUnfolding = None
lcDelta = []
lcRetract = []
for i,unfolding in unfoldingCyclesList.iterrows():
if unfolding["cycleNumber"] != previousCycleNumber and previousUnfolding["cycleNumber"]<unfolding["cycleNumber"]:
lcDelta.append(previousUnfolding["lcAfter"] - unfolding["lcBefore"])
lcRetract.append(previousUnfolding["lcAfter"])
previousUnfolding = unfolding
previousCycleNumber = unfolding["cycleNumber"]
figs[indexFigure], axs[indexFigure] = plt.subplots()
plt.scatter(lcRetract, lcDelta, marker="x", color="k", zorder=0)
plt.xlim((0,proteinLength))
# plt.ylim((0,proteinLength))
plt.xlabel("Lc before refolding (nm)")
plt.ylabel("Delta Lc (nm)")
plt.savefig(folderSave+"/"+project+"/"+"refolding_rate_lcBefore_deltaLc"+".png")
st.pyplot(figs[indexFigure])
indexFigure+=1
if UNFOLDING_PATTERN:
previousCycleNumber = 0
colors = sns.color_palette(None, nbCycles)
figs[indexFigure], axs[indexFigure] = plt.subplots()
for name in unfoldingCyclesList["dataName"].unique():
maskName = unfoldingCyclesList["dataName"]==name
for cycleNumber in unfoldingCyclesList["cycleNumber"].loc[maskName]:
maskCycle = unfoldingCyclesList["cycleNumber"]==cycleNumber
cycles = unfoldingCyclesList.loc[maskName*maskCycle]
previousUnfolding = None
previousForce = 0
previousLc = cycles.head(1)["lcAfter"]
for (index,unfolding) in cycles.iterrows():
plt.plot([previousLc, unfolding["lcBefore"]], [previousForce, unfolding["forceBefore"]], color=colors[0])
previousLc = unfolding["lcBefore"]
previousForce = unfolding["forceBefore"]
plt.plot([previousLc, unfolding["lcAfter"]], [previousForce, unfolding["forceAfter"]], color=colors[0])
previousLc = unfolding["lcAfter"]
previousForce = unfolding["forceAfter"]
previousUnfolding = unfolding
colors.pop(0)
previousCycleNumber = unfoldingCyclesList["cycleNumber"]
plt.xlabel(("Contour Length (nm)"))
plt.ylabel(("Force (pN)"))
plt.xlim((0,proteinLength*1.2))
plt.savefig(folderSave+"/"+project+"/"+"unfolding_pattern"+".png")
st.pyplot(figs[indexFigure])
indexFigure+=1
if STATE_DENSITY_MAP:
dfAll = pd.DataFrame()
for name in [name[:-4] for name in os.listdir(folderProject+"/wlc_manual_fit") if "Power Spectrum" not in name]:
dfAll = pd.concat([dfAll, pd.read_csv(folderProject+"/"+"wlc_manual_fit"+"/"+name+".csv")])
maskForce = dfAll["forceX"]>=5
maskPulling = dfAll["region"] == "pulling"
dfAll = dfAll[["proteinLc","forceX"]].loc[maskForce*maskPulling]
figs[indexFigure], axs[indexFigure] = plt.subplots()
plt.hist2d(dfAll["proteinLc"], dfAll["forceX"], bins=20, range=[[0,proteinLength], [0,70]])
plt.xlabel("Contour Length (nm)")
plt.ylabel("Force (pN)")
plt.savefig(folderSave+"/"+project+"/"+"state_density_map"+".png")
st.pyplot(figs[indexFigure])
indexFigure+=1
if COMPARE_1D==True:
nbDataSet = st.number_input("How many data set do you want to compare ?", None, None, 2)
exp1 = st.multiselect("Selection 1", experiments)
exp2 = st.multiselect("Selection 2", experiments)
names1 = [name for name in names if (name[:8] in [exp[:8] for exp in exp1]) and (name[16:-9] in [exp[9:] for exp in exp1])]
names2 = [name for name in names if (name[:8] in [exp[:8] for exp in exp2]) and (name[16:-9] in [exp[9:] for exp in exp2])]
if __name__ == '__main__':
project_overview()