-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
40 lines (32 loc) · 1.16 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python
# imports
import string
import numpy as np
from numpy import ndarray
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
def get_data(path: str) -> list:
"""reads .txt file into a list of strings"""
list_of_lines = []
with open(path, "r") as source:
for line in source:
line = line.rstrip()
if line == False:
continue
else:
list_of_lines.append(line)
return list_of_lines
def score_m(data: ndarray, target: ndarray) -> float:
"""runs the Multinomial Naive Bayes classifier with 10-fold cross validation
and reports mean accuracy """
X = data
Y = np.array(target)
score = cross_val_score(MultinomialNB(), X, Y, scoring="accuracy", cv=10)
return round(score.mean(), 3)
def score_b(data: ndarray, target: ndarray) -> float:
"""runs the Bernoulli Naive Bayes classifier with 10-fold cross validation
and reports mean accuracy """
X = data
Y = np.array(target)
score = cross_val_score(BernoulliNB(), X, Y, scoring="accuracy", cv=10)
return round(score.mean(), 3)