forked from snap-stanford/GraphRNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·760 lines (657 loc) · 33.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch import optim
from torch.optim.lr_scheduler import MultiStepLR
from sklearn.decomposition import PCA
import logging
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from time import gmtime, strftime
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
from random import shuffle
import pickle
from tensorboard_logger import configure, log_value
import scipy.misc
import time as tm
from utils import *
from model import *
from data import *
from args import Args
import create_graphs
def train_vae_epoch(epoch, args, rnn, output, data_loader,
optimizer_rnn, optimizer_output,
scheduler_rnn, scheduler_output):
rnn.train()
output.train()
loss_sum = 0
for batch_idx, data in enumerate(data_loader):
rnn.zero_grad()
output.zero_grad()
x_unsorted = data['x'].float()
y_unsorted = data['y'].float()
y_len_unsorted = data['len']
y_len_max = max(y_len_unsorted)
x_unsorted = x_unsorted[:, 0:y_len_max, :]
y_unsorted = y_unsorted[:, 0:y_len_max, :]
# initialize lstm hidden state according to batch size
rnn.hidden = rnn.init_hidden(batch_size=x_unsorted.size(0))
# sort input
y_len,sort_index = torch.sort(y_len_unsorted,0,descending=True)
y_len = y_len.numpy().tolist()
x = torch.index_select(x_unsorted,0,sort_index)
y = torch.index_select(y_unsorted,0,sort_index)
x = Variable(x).cuda()
y = Variable(y).cuda()
# if using ground truth to train
h = rnn(x, pack=True, input_len=y_len)
y_pred,z_mu,z_lsgms = output(h)
y_pred = F.sigmoid(y_pred)
# clean
y_pred = pack_padded_sequence(y_pred, y_len, batch_first=True)
y_pred = pad_packed_sequence(y_pred, batch_first=True)[0]
z_mu = pack_padded_sequence(z_mu, y_len, batch_first=True)
z_mu = pad_packed_sequence(z_mu, batch_first=True)[0]
z_lsgms = pack_padded_sequence(z_lsgms, y_len, batch_first=True)
z_lsgms = pad_packed_sequence(z_lsgms, batch_first=True)[0]
# use cross entropy loss
loss_bce = binary_cross_entropy_weight(y_pred, y)
loss_kl = -0.5 * torch.sum(1 + z_lsgms - z_mu.pow(2) - z_lsgms.exp())
loss_kl /= y.size(0)*y.size(1)*sum(y_len) # normalize
loss = loss_bce + loss_kl
loss.backward()
# update deterministic and lstm
optimizer_output.step()
optimizer_rnn.step()
scheduler_output.step()
scheduler_rnn.step()
z_mu_mean = torch.mean(z_mu.data)
z_sgm_mean = torch.mean(z_lsgms.mul(0.5).exp_().data)
z_mu_min = torch.min(z_mu.data)
z_sgm_min = torch.min(z_lsgms.mul(0.5).exp_().data)
z_mu_max = torch.max(z_mu.data)
z_sgm_max = torch.max(z_lsgms.mul(0.5).exp_().data)
if epoch % args.epochs_log==0 and batch_idx==0: # only output first batch's statistics
print('Epoch: {}/{}, train bce loss: {:.6f}, train kl loss: {:.6f}, graph type: {}, num_layer: {}, hidden: {}'.format(
epoch, args.epochs,loss_bce.data[0], loss_kl.data[0], args.graph_type, args.num_layers, args.hidden_size_rnn))
print('z_mu_mean', z_mu_mean, 'z_mu_min', z_mu_min, 'z_mu_max', z_mu_max, 'z_sgm_mean', z_sgm_mean, 'z_sgm_min', z_sgm_min, 'z_sgm_max', z_sgm_max)
# logging
log_value('bce_loss_'+args.fname, loss_bce.data[0], epoch*args.batch_ratio+batch_idx)
log_value('kl_loss_' +args.fname, loss_kl.data[0], epoch*args.batch_ratio + batch_idx)
log_value('z_mu_mean_'+args.fname, z_mu_mean, epoch*args.batch_ratio + batch_idx)
log_value('z_mu_min_'+args.fname, z_mu_min, epoch*args.batch_ratio + batch_idx)
log_value('z_mu_max_'+args.fname, z_mu_max, epoch*args.batch_ratio + batch_idx)
log_value('z_sgm_mean_'+args.fname, z_sgm_mean, epoch*args.batch_ratio + batch_idx)
log_value('z_sgm_min_'+args.fname, z_sgm_min, epoch*args.batch_ratio + batch_idx)
log_value('z_sgm_max_'+args.fname, z_sgm_max, epoch*args.batch_ratio + batch_idx)
loss_sum += loss.data[0]
return loss_sum/(batch_idx+1)
def test_vae_epoch(epoch, args, rnn, output, test_batch_size=16, save_histogram=False, sample_time = 1):
rnn.hidden = rnn.init_hidden(test_batch_size)
rnn.eval()
output.eval()
# generate graphs
max_num_node = int(args.max_num_node)
y_pred = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # normalized prediction score
y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
for i in range(max_num_node):
h = rnn(x_step)
y_pred_step, _, _ = output(h)
y_pred[:, i:i + 1, :] = F.sigmoid(y_pred_step)
x_step = sample_sigmoid(y_pred_step, sample=True, sample_time=sample_time)
y_pred_long[:, i:i + 1, :] = x_step
rnn.hidden = Variable(rnn.hidden.data).cuda()
y_pred_data = y_pred.data
y_pred_long_data = y_pred_long.data.long()
# save graphs as pickle
G_pred_list = []
for i in range(test_batch_size):
adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
G_pred_list.append(G_pred)
# save prediction histograms, plot histogram over each time step
# if save_histogram:
# save_prediction_histogram(y_pred_data.cpu().numpy(),
# fname_pred=args.figure_prediction_save_path+args.fname_pred+str(epoch)+'.jpg',
# max_num_node=max_num_node)
return G_pred_list
def test_vae_partial_epoch(epoch, args, rnn, output, data_loader, save_histogram=False,sample_time=1):
rnn.eval()
output.eval()
G_pred_list = []
for batch_idx, data in enumerate(data_loader):
x = data['x'].float()
y = data['y'].float()
y_len = data['len']
test_batch_size = x.size(0)
rnn.hidden = rnn.init_hidden(test_batch_size)
# generate graphs
max_num_node = int(args.max_num_node)
y_pred = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # normalized prediction score
y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
for i in range(max_num_node):
print('finish node',i)
h = rnn(x_step)
y_pred_step, _, _ = output(h)
y_pred[:, i:i + 1, :] = F.sigmoid(y_pred_step)
x_step = sample_sigmoid_supervised(y_pred_step, y[:,i:i+1,:].cuda(), current=i, y_len=y_len, sample_time=sample_time)
y_pred_long[:, i:i + 1, :] = x_step
rnn.hidden = Variable(rnn.hidden.data).cuda()
y_pred_data = y_pred.data
y_pred_long_data = y_pred_long.data.long()
# save graphs as pickle
for i in range(test_batch_size):
adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
G_pred_list.append(G_pred)
return G_pred_list
def train_mlp_epoch(epoch, args, rnn, output, data_loader,
optimizer_rnn, optimizer_output,
scheduler_rnn, scheduler_output):
rnn.train()
output.train()
loss_sum = 0
for batch_idx, data in enumerate(data_loader):
rnn.zero_grad()
output.zero_grad()
x_unsorted = data['x'].float()
y_unsorted = data['y'].float()
y_len_unsorted = data['len']
y_len_max = max(y_len_unsorted)
x_unsorted = x_unsorted[:, 0:y_len_max, :]
y_unsorted = y_unsorted[:, 0:y_len_max, :]
# initialize lstm hidden state according to batch size
rnn.hidden = rnn.init_hidden(batch_size=x_unsorted.size(0))
# sort input
y_len,sort_index = torch.sort(y_len_unsorted,0,descending=True)
y_len = y_len.numpy().tolist()
x = torch.index_select(x_unsorted,0,sort_index)
y = torch.index_select(y_unsorted,0,sort_index)
x = Variable(x).cuda()
y = Variable(y).cuda()
h = rnn(x, pack=True, input_len=y_len)
y_pred = output(h)
y_pred = F.sigmoid(y_pred)
# clean
y_pred = pack_padded_sequence(y_pred, y_len, batch_first=True)
y_pred = pad_packed_sequence(y_pred, batch_first=True)[0]
# use cross entropy loss
loss = binary_cross_entropy_weight(y_pred, y)
loss.backward()
# update deterministic and lstm
optimizer_output.step()
optimizer_rnn.step()
scheduler_output.step()
scheduler_rnn.step()
if epoch % args.epochs_log==0 and batch_idx==0: # only output first batch's statistics
print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, num_layer: {}, hidden: {}'.format(
epoch, args.epochs,loss.data[0], args.graph_type, args.num_layers, args.hidden_size_rnn))
# logging
log_value('loss_'+args.fname, loss.data[0], epoch*args.batch_ratio+batch_idx)
loss_sum += loss.data[0]
return loss_sum/(batch_idx+1)
def test_mlp_epoch(epoch, args, rnn, output, test_batch_size=16, save_histogram=False,sample_time=1):
rnn.hidden = rnn.init_hidden(test_batch_size)
rnn.eval()
output.eval()
# generate graphs
max_num_node = int(args.max_num_node)
y_pred = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # normalized prediction score
y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
for i in range(max_num_node):
h = rnn(x_step)
y_pred_step = output(h)
y_pred[:, i:i + 1, :] = F.sigmoid(y_pred_step)
x_step = sample_sigmoid(y_pred_step, sample=True, sample_time=sample_time)
y_pred_long[:, i:i + 1, :] = x_step
rnn.hidden = Variable(rnn.hidden.data).cuda()
y_pred_data = y_pred.data
y_pred_long_data = y_pred_long.data.long()
# save graphs as pickle
G_pred_list = []
for i in range(test_batch_size):
adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
G_pred_list.append(G_pred)
# # save prediction histograms, plot histogram over each time step
# if save_histogram:
# save_prediction_histogram(y_pred_data.cpu().numpy(),
# fname_pred=args.figure_prediction_save_path+args.fname_pred+str(epoch)+'.jpg',
# max_num_node=max_num_node)
return G_pred_list
def test_mlp_partial_epoch(epoch, args, rnn, output, data_loader, save_histogram=False,sample_time=1):
rnn.eval()
output.eval()
G_pred_list = []
for batch_idx, data in enumerate(data_loader):
x = data['x'].float()
y = data['y'].float()
y_len = data['len']
test_batch_size = x.size(0)
rnn.hidden = rnn.init_hidden(test_batch_size)
# generate graphs
max_num_node = int(args.max_num_node)
y_pred = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # normalized prediction score
y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
for i in range(max_num_node):
print('finish node',i)
h = rnn(x_step)
y_pred_step = output(h)
y_pred[:, i:i + 1, :] = F.sigmoid(y_pred_step)
x_step = sample_sigmoid_supervised(y_pred_step, y[:,i:i+1,:].cuda(), current=i, y_len=y_len, sample_time=sample_time)
y_pred_long[:, i:i + 1, :] = x_step
rnn.hidden = Variable(rnn.hidden.data).cuda()
y_pred_data = y_pred.data
y_pred_long_data = y_pred_long.data.long()
# save graphs as pickle
for i in range(test_batch_size):
adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
G_pred_list.append(G_pred)
return G_pred_list
def test_mlp_partial_simple_epoch(epoch, args, rnn, output, data_loader, save_histogram=False,sample_time=1):
rnn.eval()
output.eval()
G_pred_list = []
for batch_idx, data in enumerate(data_loader):
x = data['x'].float()
y = data['y'].float()
y_len = data['len']
test_batch_size = x.size(0)
rnn.hidden = rnn.init_hidden(test_batch_size)
# generate graphs
max_num_node = int(args.max_num_node)
y_pred = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # normalized prediction score
y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
for i in range(max_num_node):
print('finish node',i)
h = rnn(x_step)
y_pred_step = output(h)
y_pred[:, i:i + 1, :] = F.sigmoid(y_pred_step)
x_step = sample_sigmoid_supervised_simple(y_pred_step, y[:,i:i+1,:].cuda(), current=i, y_len=y_len, sample_time=sample_time)
y_pred_long[:, i:i + 1, :] = x_step
rnn.hidden = Variable(rnn.hidden.data).cuda()
y_pred_data = y_pred.data
y_pred_long_data = y_pred_long.data.long()
# save graphs as pickle
for i in range(test_batch_size):
adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
G_pred_list.append(G_pred)
return G_pred_list
def train_mlp_forward_epoch(epoch, args, rnn, output, data_loader):
rnn.train()
output.train()
loss_sum = 0
for batch_idx, data in enumerate(data_loader):
rnn.zero_grad()
output.zero_grad()
x_unsorted = data['x'].float()
y_unsorted = data['y'].float()
y_len_unsorted = data['len']
y_len_max = max(y_len_unsorted)
x_unsorted = x_unsorted[:, 0:y_len_max, :]
y_unsorted = y_unsorted[:, 0:y_len_max, :]
# initialize lstm hidden state according to batch size
rnn.hidden = rnn.init_hidden(batch_size=x_unsorted.size(0))
# sort input
y_len,sort_index = torch.sort(y_len_unsorted,0,descending=True)
y_len = y_len.numpy().tolist()
x = torch.index_select(x_unsorted,0,sort_index)
y = torch.index_select(y_unsorted,0,sort_index)
x = Variable(x).cuda()
y = Variable(y).cuda()
h = rnn(x, pack=True, input_len=y_len)
y_pred = output(h)
y_pred = F.sigmoid(y_pred)
# clean
y_pred = pack_padded_sequence(y_pred, y_len, batch_first=True)
y_pred = pad_packed_sequence(y_pred, batch_first=True)[0]
# use cross entropy loss
loss = 0
for j in range(y.size(1)):
# print('y_pred',y_pred[0,j,:],'y',y[0,j,:])
end_idx = min(j+1,y.size(2))
loss += binary_cross_entropy_weight(y_pred[:,j,0:end_idx], y[:,j,0:end_idx])*end_idx
if epoch % args.epochs_log==0 and batch_idx==0: # only output first batch's statistics
print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, num_layer: {}, hidden: {}'.format(
epoch, args.epochs,loss.data[0], args.graph_type, args.num_layers, args.hidden_size_rnn))
# logging
log_value('loss_'+args.fname, loss.data[0], epoch*args.batch_ratio+batch_idx)
loss_sum += loss.data[0]
return loss_sum/(batch_idx+1)
## too complicated, deprecated
# def test_mlp_partial_bfs_epoch(epoch, args, rnn, output, data_loader, save_histogram=False,sample_time=1):
# rnn.eval()
# output.eval()
# G_pred_list = []
# for batch_idx, data in enumerate(data_loader):
# x = data['x'].float()
# y = data['y'].float()
# y_len = data['len']
# test_batch_size = x.size(0)
# rnn.hidden = rnn.init_hidden(test_batch_size)
# # generate graphs
# max_num_node = int(args.max_num_node)
# y_pred = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # normalized prediction score
# y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
# x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
# for i in range(max_num_node):
# # 1 back up hidden state
# hidden_prev = Variable(rnn.hidden.data).cuda()
# h = rnn(x_step)
# y_pred_step = output(h)
# y_pred[:, i:i + 1, :] = F.sigmoid(y_pred_step)
# x_step = sample_sigmoid_supervised(y_pred_step, y[:,i:i+1,:].cuda(), current=i, y_len=y_len, sample_time=sample_time)
# y_pred_long[:, i:i + 1, :] = x_step
#
# rnn.hidden = Variable(rnn.hidden.data).cuda()
#
# print('finish node', i)
# y_pred_data = y_pred.data
# y_pred_long_data = y_pred_long.data.long()
#
# # save graphs as pickle
# for i in range(test_batch_size):
# adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
# G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
# G_pred_list.append(G_pred)
# return G_pred_list
def train_rnn_epoch(epoch, args, rnn, output, data_loader,
optimizer_rnn, optimizer_output,
scheduler_rnn, scheduler_output):
rnn.train()
output.train()
loss_sum = 0
for batch_idx, data in enumerate(data_loader):
rnn.zero_grad()
output.zero_grad()
x_unsorted = data['x'].float()
y_unsorted = data['y'].float()
y_len_unsorted = data['len']
y_len_max = max(y_len_unsorted)
x_unsorted = x_unsorted[:, 0:y_len_max, :]
y_unsorted = y_unsorted[:, 0:y_len_max, :]
# initialize lstm hidden state according to batch size
rnn.hidden = rnn.init_hidden(batch_size=x_unsorted.size(0))
# output.hidden = output.init_hidden(batch_size=x_unsorted.size(0)*x_unsorted.size(1))
# sort input
y_len,sort_index = torch.sort(y_len_unsorted,0,descending=True)
y_len = y_len.numpy().tolist()
x = torch.index_select(x_unsorted,0,sort_index)
y = torch.index_select(y_unsorted,0,sort_index)
# input, output for output rnn module
# a smart use of pytorch builtin function: pack variable--b1_l1,b2_l1,...,b1_l2,b2_l2,...
y_reshape = pack_padded_sequence(y,y_len,batch_first=True).data
# reverse y_reshape, so that their lengths are sorted, add dimension
idx = [i for i in range(y_reshape.size(0)-1, -1, -1)]
idx = torch.LongTensor(idx)
y_reshape = y_reshape.index_select(0, idx)
y_reshape = y_reshape.view(y_reshape.size(0),y_reshape.size(1),1)
output_x = torch.cat((torch.ones(y_reshape.size(0),1,1),y_reshape[:,0:-1,0:1]),dim=1)
output_y = y_reshape
# batch size for output module: sum(y_len)
output_y_len = []
output_y_len_bin = np.bincount(np.array(y_len))
for i in range(len(output_y_len_bin)-1,0,-1):
count_temp = np.sum(output_y_len_bin[i:]) # count how many y_len is above i
output_y_len.extend([min(i,y.size(2))]*count_temp) # put them in output_y_len; max value should not exceed y.size(2)
# pack into variable
x = Variable(x).cuda()
y = Variable(y).cuda()
output_x = Variable(output_x).cuda()
output_y = Variable(output_y).cuda()
# print(output_y_len)
# print('len',len(output_y_len))
# print('y',y.size())
# print('output_y',output_y.size())
# if using ground truth to train
h = rnn(x, pack=True, input_len=y_len)
h = pack_padded_sequence(h,y_len,batch_first=True).data # get packed hidden vector
# reverse h
idx = [i for i in range(h.size(0) - 1, -1, -1)]
idx = Variable(torch.LongTensor(idx)).cuda()
h = h.index_select(0, idx)
hidden_null = Variable(torch.zeros(args.num_layers-1, h.size(0), h.size(1))).cuda()
output.hidden = torch.cat((h.view(1,h.size(0),h.size(1)),hidden_null),dim=0) # num_layers, batch_size, hidden_size
y_pred = output(output_x, pack=True, input_len=output_y_len)
y_pred = F.sigmoid(y_pred)
# clean
y_pred = pack_padded_sequence(y_pred, output_y_len, batch_first=True)
y_pred = pad_packed_sequence(y_pred, batch_first=True)[0]
output_y = pack_padded_sequence(output_y,output_y_len,batch_first=True)
output_y = pad_packed_sequence(output_y,batch_first=True)[0]
# use cross entropy loss
loss = binary_cross_entropy_weight(y_pred, output_y)
loss.backward()
# update deterministic and lstm
optimizer_output.step()
optimizer_rnn.step()
scheduler_output.step()
scheduler_rnn.step()
if epoch % args.epochs_log==0 and batch_idx==0: # only output first batch's statistics
print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, num_layer: {}, hidden: {}'.format(
epoch, args.epochs,loss.data[0], args.graph_type, args.num_layers, args.hidden_size_rnn))
# logging
log_value('loss_'+args.fname, loss.data[0], epoch*args.batch_ratio+batch_idx)
feature_dim = y.size(1)*y.size(2)
loss_sum += loss.data[0]*feature_dim
return loss_sum/(batch_idx+1)
def test_rnn_epoch(epoch, args, rnn, output, test_batch_size=16):
rnn.hidden = rnn.init_hidden(test_batch_size)
rnn.eval()
output.eval()
# generate graphs
max_num_node = int(args.max_num_node)
y_pred_long = Variable(torch.zeros(test_batch_size, max_num_node, args.max_prev_node)).cuda() # discrete prediction
x_step = Variable(torch.ones(test_batch_size,1,args.max_prev_node)).cuda()
for i in range(max_num_node):
h = rnn(x_step)
# output.hidden = h.permute(1,0,2)
hidden_null = Variable(torch.zeros(args.num_layers - 1, h.size(0), h.size(2))).cuda()
output.hidden = torch.cat((h.permute(1,0,2), hidden_null),
dim=0) # num_layers, batch_size, hidden_size
x_step = Variable(torch.zeros(test_batch_size,1,args.max_prev_node)).cuda()
output_x_step = Variable(torch.ones(test_batch_size,1,1)).cuda()
for j in range(min(args.max_prev_node,i+1)):
output_y_pred_step = output(output_x_step)
output_x_step = sample_sigmoid(output_y_pred_step, sample=True, sample_time=1)
x_step[:,:,j:j+1] = output_x_step
output.hidden = Variable(output.hidden.data).cuda()
y_pred_long[:, i:i + 1, :] = x_step
rnn.hidden = Variable(rnn.hidden.data).cuda()
y_pred_long_data = y_pred_long.data.long()
# save graphs as pickle
G_pred_list = []
for i in range(test_batch_size):
adj_pred = decode_adj(y_pred_long_data[i].cpu().numpy())
G_pred = get_graph(adj_pred) # get a graph from zero-padded adj
G_pred_list.append(G_pred)
return G_pred_list
def train_rnn_forward_epoch(epoch, args, rnn, output, data_loader):
rnn.train()
output.train()
loss_sum = 0
for batch_idx, data in enumerate(data_loader):
rnn.zero_grad()
output.zero_grad()
x_unsorted = data['x'].float()
y_unsorted = data['y'].float()
y_len_unsorted = data['len']
y_len_max = max(y_len_unsorted)
x_unsorted = x_unsorted[:, 0:y_len_max, :]
y_unsorted = y_unsorted[:, 0:y_len_max, :]
# initialize lstm hidden state according to batch size
rnn.hidden = rnn.init_hidden(batch_size=x_unsorted.size(0))
# output.hidden = output.init_hidden(batch_size=x_unsorted.size(0)*x_unsorted.size(1))
# sort input
y_len,sort_index = torch.sort(y_len_unsorted,0,descending=True)
y_len = y_len.numpy().tolist()
x = torch.index_select(x_unsorted,0,sort_index)
y = torch.index_select(y_unsorted,0,sort_index)
# input, output for output rnn module
# a smart use of pytorch builtin function: pack variable--b1_l1,b2_l1,...,b1_l2,b2_l2,...
y_reshape = pack_padded_sequence(y,y_len,batch_first=True).data
# reverse y_reshape, so that their lengths are sorted, add dimension
idx = [i for i in range(y_reshape.size(0)-1, -1, -1)]
idx = torch.LongTensor(idx)
y_reshape = y_reshape.index_select(0, idx)
y_reshape = y_reshape.view(y_reshape.size(0),y_reshape.size(1),1)
output_x = torch.cat((torch.ones(y_reshape.size(0),1,1),y_reshape[:,0:-1,0:1]),dim=1)
output_y = y_reshape
# batch size for output module: sum(y_len)
output_y_len = []
output_y_len_bin = np.bincount(np.array(y_len))
for i in range(len(output_y_len_bin)-1,0,-1):
count_temp = np.sum(output_y_len_bin[i:]) # count how many y_len is above i
output_y_len.extend([min(i,y.size(2))]*count_temp) # put them in output_y_len; max value should not exceed y.size(2)
# pack into variable
x = Variable(x).cuda()
y = Variable(y).cuda()
output_x = Variable(output_x).cuda()
output_y = Variable(output_y).cuda()
# print(output_y_len)
# print('len',len(output_y_len))
# print('y',y.size())
# print('output_y',output_y.size())
# if using ground truth to train
h = rnn(x, pack=True, input_len=y_len)
h = pack_padded_sequence(h,y_len,batch_first=True).data # get packed hidden vector
# reverse h
idx = [i for i in range(h.size(0) - 1, -1, -1)]
idx = Variable(torch.LongTensor(idx)).cuda()
h = h.index_select(0, idx)
hidden_null = Variable(torch.zeros(args.num_layers-1, h.size(0), h.size(1))).cuda()
output.hidden = torch.cat((h.view(1,h.size(0),h.size(1)),hidden_null),dim=0) # num_layers, batch_size, hidden_size
y_pred = output(output_x, pack=True, input_len=output_y_len)
y_pred = F.sigmoid(y_pred)
# clean
y_pred = pack_padded_sequence(y_pred, output_y_len, batch_first=True)
y_pred = pad_packed_sequence(y_pred, batch_first=True)[0]
output_y = pack_padded_sequence(output_y,output_y_len,batch_first=True)
output_y = pad_packed_sequence(output_y,batch_first=True)[0]
# use cross entropy loss
loss = binary_cross_entropy_weight(y_pred, output_y)
if epoch % args.epochs_log==0 and batch_idx==0: # only output first batch's statistics
print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, num_layer: {}, hidden: {}'.format(
epoch, args.epochs,loss.data[0], args.graph_type, args.num_layers, args.hidden_size_rnn))
# logging
log_value('loss_'+args.fname, loss.data[0], epoch*args.batch_ratio+batch_idx)
# print(y_pred.size())
feature_dim = y_pred.size(0)*y_pred.size(1)
loss_sum += loss.data[0]*feature_dim/y.size(0)
return loss_sum/(batch_idx+1)
########### train function for LSTM + VAE
def train(args, dataset_train, rnn, output):
# check if load existing model
if args.load:
fname = args.model_save_path + args.fname + 'lstm_' + str(args.load_epoch) + '.dat'
rnn.load_state_dict(torch.load(fname))
fname = args.model_save_path + args.fname + 'output_' + str(args.load_epoch) + '.dat'
output.load_state_dict(torch.load(fname))
args.lr = 0.00001
epoch = args.load_epoch
print('model loaded!, lr: {}'.format(args.lr))
else:
epoch = 1
# initialize optimizer
optimizer_rnn = optim.Adam(list(rnn.parameters()), lr=args.lr)
optimizer_output = optim.Adam(list(output.parameters()), lr=args.lr)
scheduler_rnn = MultiStepLR(optimizer_rnn, milestones=args.milestones, gamma=args.lr_rate)
scheduler_output = MultiStepLR(optimizer_output, milestones=args.milestones, gamma=args.lr_rate)
# start main loop
time_all = np.zeros(args.epochs)
while epoch<=args.epochs:
time_start = tm.time()
# train
if 'GraphRNN_VAE' in args.note:
train_vae_epoch(epoch, args, rnn, output, dataset_train,
optimizer_rnn, optimizer_output,
scheduler_rnn, scheduler_output)
elif 'GraphRNN_MLP' in args.note:
train_mlp_epoch(epoch, args, rnn, output, dataset_train,
optimizer_rnn, optimizer_output,
scheduler_rnn, scheduler_output)
elif 'GraphRNN_RNN' in args.note:
train_rnn_epoch(epoch, args, rnn, output, dataset_train,
optimizer_rnn, optimizer_output,
scheduler_rnn, scheduler_output)
time_end = tm.time()
time_all[epoch - 1] = time_end - time_start
# test
if epoch % args.epochs_test == 0 and epoch>=args.epochs_test_start:
for sample_time in range(1,4):
G_pred = []
while len(G_pred)<args.test_total_size:
if 'GraphRNN_VAE' in args.note:
G_pred_step = test_vae_epoch(epoch, args, rnn, output, test_batch_size=args.test_batch_size,sample_time=sample_time)
elif 'GraphRNN_MLP' in args.note:
G_pred_step = test_mlp_epoch(epoch, args, rnn, output, test_batch_size=args.test_batch_size,sample_time=sample_time)
elif 'GraphRNN_RNN' in args.note:
G_pred_step = test_rnn_epoch(epoch, args, rnn, output, test_batch_size=args.test_batch_size)
G_pred.extend(G_pred_step)
# save graphs
fname = args.graph_save_path + args.fname_pred + str(epoch) +'_'+str(sample_time) + '.dat'
save_graph_list(G_pred, fname)
if 'GraphRNN_RNN' in args.note:
break
print('test done, graphs saved')
# save model checkpoint
if args.save:
if epoch % args.epochs_save == 0:
fname = args.model_save_path + args.fname + 'lstm_' + str(epoch) + '.dat'
torch.save(rnn.state_dict(), fname)
fname = args.model_save_path + args.fname + 'output_' + str(epoch) + '.dat'
torch.save(output.state_dict(), fname)
epoch += 1
np.save(args.timing_save_path+args.fname,time_all)
########### for graph completion task
def train_graph_completion(args, dataset_test, rnn, output):
fname = args.model_save_path + args.fname + 'lstm_' + str(args.load_epoch) + '.dat'
rnn.load_state_dict(torch.load(fname))
fname = args.model_save_path + args.fname + 'output_' + str(args.load_epoch) + '.dat'
output.load_state_dict(torch.load(fname))
epoch = args.load_epoch
print('model loaded!, epoch: {}'.format(args.load_epoch))
for sample_time in range(1,4):
if 'GraphRNN_MLP' in args.note:
G_pred = test_mlp_partial_simple_epoch(epoch, args, rnn, output, dataset_test,sample_time=sample_time)
if 'GraphRNN_VAE' in args.note:
G_pred = test_vae_partial_epoch(epoch, args, rnn, output, dataset_test,sample_time=sample_time)
# save graphs
fname = args.graph_save_path + args.fname_pred + str(epoch) +'_'+str(sample_time) + 'graph_completion.dat'
save_graph_list(G_pred, fname)
print('graph completion done, graphs saved')
########### for NLL evaluation
def train_nll(args, dataset_train, dataset_test, rnn, output,graph_validate_len,graph_test_len, max_iter = 1000):
fname = args.model_save_path + args.fname + 'lstm_' + str(args.load_epoch) + '.dat'
rnn.load_state_dict(torch.load(fname))
fname = args.model_save_path + args.fname + 'output_' + str(args.load_epoch) + '.dat'
output.load_state_dict(torch.load(fname))
epoch = args.load_epoch
print('model loaded!, epoch: {}'.format(args.load_epoch))
fname_output = args.nll_save_path + args.note + '_' + args.graph_type + '.csv'
with open(fname_output, 'w+') as f:
f.write(str(graph_validate_len)+','+str(graph_test_len)+'\n')
f.write('train,test\n')
for iter in range(max_iter):
if 'GraphRNN_MLP' in args.note:
nll_train = train_mlp_forward_epoch(epoch, args, rnn, output, dataset_train)
nll_test = train_mlp_forward_epoch(epoch, args, rnn, output, dataset_test)
if 'GraphRNN_RNN' in args.note:
nll_train = train_rnn_forward_epoch(epoch, args, rnn, output, dataset_train)
nll_test = train_rnn_forward_epoch(epoch, args, rnn, output, dataset_test)
print('train',nll_train,'test',nll_test)
f.write(str(nll_train)+','+str(nll_test)+'\n')
print('NLL evaluation done')