forked from snap-stanford/GraphRNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
executable file
·216 lines (192 loc) · 10.9 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# this file is used to plot images
from main import *
args = Args()
print(args.graph_type, args.note)
# epoch = 16000
epoch = 3000
sample_time = 3
def find_nearest_idx(array,value):
idx = (np.abs(array-value)).argmin()
return idx
# for baseline model
for num_layers in range(4,5):
# give file name and figure name
fname_real = args.graph_save_path + args.fname_real + str(0)
fname_pred = args.graph_save_path + args.fname_pred + str(epoch) +'_'+str(sample_time)
figname = args.figure_save_path + args.fname + str(epoch) +'_'+str(sample_time)
# fname_real = args.graph_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# str(epoch) + '_real_' + str(True) + '_' + str(num_layers)
# fname_pred = args.graph_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# str(epoch) + '_pred_' + str(True) + '_' + str(num_layers)
# figname = args.figure_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# str(epoch) + '_' + str(num_layers)
print(fname_real)
print(fname_pred)
# load data
graph_real_list = load_graph_list(fname_real + '.dat')
shuffle(graph_real_list)
graph_pred_list_raw = load_graph_list(fname_pred + '.dat')
graph_real_len_list = np.array([len(graph_real_list[i]) for i in range(len(graph_real_list))])
graph_pred_len_list_raw = np.array([len(graph_pred_list_raw[i]) for i in range(len(graph_pred_list_raw))])
graph_pred_list = graph_pred_list_raw
graph_pred_len_list = graph_pred_len_list_raw
# # select samples
# graph_pred_list = []
# graph_pred_len_list = []
# for value in graph_real_len_list:
# pred_idx = find_nearest_idx(graph_pred_len_list_raw, value)
# graph_pred_list.append(graph_pred_list_raw[pred_idx])
# graph_pred_len_list.append(graph_pred_len_list_raw[pred_idx])
# # delete
# graph_pred_len_list_raw=np.delete(graph_pred_len_list_raw, pred_idx)
# del graph_pred_list_raw[pred_idx]
# if len(graph_pred_list)==200:
# break
# graph_pred_len_list = np.array(graph_pred_len_list)
# # select pred data within certain range
# len_min = np.amin(graph_real_len_list)
# len_max = np.amax(graph_real_len_list)
# pred_index = np.where((graph_pred_len_list>=len_min)&(graph_pred_len_list<=len_max))
# # print(pred_index[0])
# graph_pred_list = [graph_pred_list[i] for i in pred_index[0]]
# graph_pred_len_list = graph_pred_len_list[pred_index[0]]
# real_order = np.argsort(graph_real_len_list)
# pred_order = np.argsort(graph_pred_len_list)
real_order = np.argsort(graph_real_len_list)[::-1]
pred_order = np.argsort(graph_pred_len_list)[::-1]
# print(real_order)
# print(pred_order)
graph_real_list = [graph_real_list[i] for i in real_order]
graph_pred_list = [graph_pred_list[i] for i in pred_order]
# shuffle(graph_real_list)
# shuffle(graph_pred_list)
print('real average nodes', sum([graph_real_list[i].number_of_nodes() for i in range(len(graph_real_list))])/len(graph_real_list))
print('pred average nodes', sum([graph_pred_list[i].number_of_nodes() for i in range(len(graph_pred_list))])/len(graph_pred_list))
print('num of real graphs', len(graph_real_list))
print('num of pred graphs', len(graph_pred_list))
# # draw all graphs
# for iter in range(8):
# print('iter', iter)
# graph_list = []
# for i in range(8):
# index = 8 * iter + i
# # graph_real_list[index].remove_nodes_from(list(nx.isolates(graph_real_list[index])))
# # graph_pred_list[index].remove_nodes_from(list(nx.isolates(graph_pred_list[index])))
# graph_list.append(graph_real_list[index])
# graph_list.append(graph_pred_list[index])
# print('real', graph_real_list[index].number_of_nodes())
# print('pred', graph_pred_list[index].number_of_nodes())
#
# draw_graph_list(graph_list, row=4, col=4, fname=figname + '_' + str(iter))
# draw all graphs
for iter in range(8):
print('iter', iter)
graph_list = []
for i in range(8):
index = 32 * iter + i
# graph_real_list[index].remove_nodes_from(list(nx.isolates(graph_real_list[index])))
# graph_pred_list[index].remove_nodes_from(list(nx.isolates(graph_pred_list[index])))
# graph_list.append(graph_real_list[index])
graph_list.append(graph_pred_list[index])
# print('real', graph_real_list[index].number_of_nodes())
print('pred', graph_pred_list[index].number_of_nodes())
draw_graph_list(graph_list, row=4, col=4, fname=figname + '_' + str(iter)+'_pred')
# draw all graphs
for iter in range(8):
print('iter', iter)
graph_list = []
for i in range(8):
index = 16 * iter + i
# graph_real_list[index].remove_nodes_from(list(nx.isolates(graph_real_list[index])))
# graph_pred_list[index].remove_nodes_from(list(nx.isolates(graph_pred_list[index])))
graph_list.append(graph_real_list[index])
# graph_list.append(graph_pred_list[index])
print('real', graph_real_list[index].number_of_nodes())
# print('pred', graph_pred_list[index].number_of_nodes())
draw_graph_list(graph_list, row=4, col=4, fname=figname + '_' + str(iter)+'_real')
#
# # for new model
# elif args.note == 'GraphRNN_structure' and args.is_flexible==False:
# for num_layers in range(4,5):
# # give file name and figure name
# # fname_real = args.graph_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# # str(epoch) + '_real_bptt_' + str(args.bptt)+'_'+str(num_layers)+'_dilation_'+str(args.is_dilation)+'_flexible_'+str(args.is_flexible)+'_bn_'+str(args.is_bn)+'_lr_'+str(args.lr)
# # fname_pred = args.graph_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# # str(epoch) + '_pred_bptt_' + str(args.bptt)+'_'+str(num_layers)+'_dilation_'+str(args.is_dilation)+'_flexible_'+str(args.is_flexible)+'_bn_'+str(args.is_bn)+'_lr_'+str(args.lr)
#
# fname_pred = args.graph_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_pred_' + str(args.num_layers) + '_' + str(args.bptt)+ '_' + str(args.bptt_len) + '_' + str(args.hidden_size)
# fname_real = args.graph_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_real_' + str(args.num_layers) + '_' + str(args.bptt)+ '_' + str(args.bptt_len) + '_' + str(args.hidden_size)
# figname = args.figure_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_pred_' + str(args.num_layers) + '_' + str(args.bptt)+ '_' + str(args.bptt_len) + '_' + str(args.hidden_size)
# print(fname_real)
# # load data
# graph_real_list = load_graph_list(fname_real+'.dat')
# graph_pred_list = load_graph_list(fname_pred+'.dat')
#
# graph_real_len_list = np.array([len(graph_real_list[i]) for i in range(len(graph_real_list))])
# graph_pred_len_list = np.array([len(graph_pred_list[i]) for i in range(len(graph_pred_list))])
# real_order = np.argsort(graph_real_len_list)[::-1]
# pred_order = np.argsort(graph_pred_len_list)[::-1]
# # print(real_order)
# # print(pred_order)
# graph_real_list = [graph_real_list[i] for i in real_order]
# graph_pred_list = [graph_pred_list[i] for i in pred_order]
#
# shuffle(graph_pred_list)
#
#
# print('real average nodes',
# sum([graph_real_list[i].number_of_nodes() for i in range(len(graph_real_list))]) / len(graph_real_list))
# print('pred average nodes',
# sum([graph_pred_list[i].number_of_nodes() for i in range(len(graph_pred_list))]) / len(graph_pred_list))
# print('num of graphs', len(graph_real_list))
#
# # draw all graphs
# for iter in range(2):
# print('iter', iter)
# graph_list = []
# for i in range(8):
# index = 8*iter + i
# graph_real_list[index].remove_nodes_from(nx.isolates(graph_real_list[index]))
# graph_pred_list[index].remove_nodes_from(nx.isolates(graph_pred_list[index]))
# graph_list.append(graph_real_list[index])
# graph_list.append(graph_pred_list[index])
# print('real', graph_real_list[index].number_of_nodes())
# print('pred', graph_pred_list[index].number_of_nodes())
# draw_graph_list(graph_list, row=4, col=4, fname=figname+'_'+str(iter))
#
#
# # for new model
# elif args.note == 'GraphRNN_structure' and args.is_flexible==True:
# for num_layers in range(4,5):
# graph_real_list = []
# graph_pred_list = []
# epoch_end = 30000
# for epoch in [epoch_end-500*(8-i) for i in range(8)]:
# # give file name and figure name
# fname_real = args.graph_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# str(epoch) + '_real_bptt_' + str(args.bptt)+'_'+str(num_layers)+'_dilation_'+str(args.is_dilation)+'_flexible_'+str(args.is_flexible)+'_bn_'+str(args.is_bn)+'_lr_'+str(args.lr)
# fname_pred = args.graph_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# str(epoch) + '_pred_bptt_' + str(args.bptt)+'_'+str(num_layers)+'_dilation_'+str(args.is_dilation)+'_flexible_'+str(args.is_flexible)+'_bn_'+str(args.is_bn)+'_lr_'+str(args.lr)
#
# # load data
# graph_real_list += load_graph_list(fname_real+'.dat')
# graph_pred_list += load_graph_list(fname_pred+'.dat')
# print('num of graphs', len(graph_real_list))
#
# figname = args.figure_save_path + args.note + '_' + args.graph_type + '_' + str(args.graph_node_num) + '_' + \
# str(epoch) + str(args.sample_when_validate) + '_' + str(num_layers) + '_dilation_' + str(args.is_dilation) + '_flexible_' + str(args.is_flexible) + '_bn_' + str(args.is_bn) + '_lr_' + str(args.lr)
#
# # draw all graphs
# for iter in range(1):
# print('iter', iter)
# graph_list = []
# for i in range(8):
# index = 8*iter + i
# graph_real_list[index].remove_nodes_from(nx.isolates(graph_real_list[index]))
# graph_pred_list[index].remove_nodes_from(nx.isolates(graph_pred_list[index]))
# graph_list.append(graph_real_list[index])
# graph_list.append(graph_pred_list[index])
# draw_graph_list(graph_list, row=4, col=4, fname=figname+'_'+str(iter))