forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneralRecognitionV2_PPLCNetV2_base.yaml
205 lines (196 loc) · 4.74 KB
/
GeneralRecognitionV2_PPLCNetV2_base.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 100
print_batch_step: 20
use_visualdl: False
eval_mode: retrieval
retrieval_feature_from: features # 'backbone' or 'features'
re_ranking: False
use_dali: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model architecture
Arch:
name: RecModel
infer_output_key: features
infer_add_softmax: False
Backbone:
name: PPLCNetV2_base_ShiTu
pretrained: True
use_ssld: True
class_expand: &feat_dim 512
BackboneStopLayer:
name: flatten
Neck:
name: BNNeck
num_features: *feat_dim
weight_attr:
initializer:
name: Constant
value: 1.0
bias_attr:
initializer:
name: Constant
value: 0.0
learning_rate: 1.0e-20 # NOTE: Temporarily set lr small enough to freeze the bias to zero
Head:
name: FC
embedding_size: *feat_dim
class_num: 192612
weight_attr:
initializer:
name: Normal
std: 0.001
bias_attr: False
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
- TripletAngularMarginLoss:
weight: 1.0
feature_from: features
margin: 0.5
reduction: mean
add_absolute: True
absolute_loss_weight: 0.1
normalize_feature: True
ap_value: 0.8
an_value: 0.4
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.06 # for 8gpu x 256bs
warmup_epoch: 5
regularizer:
name: L2
coeff: 0.00001
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/
cls_label_path: ./dataset/train_reg_all_data_v2.txt
relabel: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- RandFlipImage:
flip_code: 1
- Pad:
padding: 10
backend: cv2
- RandCropImageV2:
size: [224, 224]
- RandomRotation:
prob: 0.5
degrees: 90
interpolation: bilinear
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: hwc
sampler:
name: PKSampler
batch_size: 256
sample_per_id: 4
drop_last: False
shuffle: True
sample_method: "id_avg_prob"
id_list: [50030, 80700, 92019, 96015] # be careful when set relabel=True
ratio: [4, 4]
loader:
num_workers: 4
use_shared_memory: True
Eval:
Query:
dataset:
name: VeriWild
image_root: ./dataset/Aliproduct/
cls_label_path: ./dataset/Aliproduct/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: hwc
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Gallery:
dataset:
name: VeriWild
image_root: ./dataset/Aliproduct/
cls_label_path: ./dataset/Aliproduct/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
return_numpy: False
interpolation: bilinear
backend: cv2
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: hwc
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Metric:
Eval:
- Recallk:
topk: [1, 5]
- mAP: {}