-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
56 lines (38 loc) · 1.64 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
from easydict import EasyDict as edict
import time
import torch
# init
__C = edict()
cfg = __C
#------------------------------TRAIN------------------------
__C.SEED = 3035 # random seed, for reproduction
__C.DATASET = 'SHHA' # dataset selection: NWPU, SHHA, SHHB, QNRF, FDST
__C.NET = 'VGG16_FPN' # optional ['HR_Net', 'VGG16_FPN']
__C.PRE_HR_WEIGHTS = '../PretrainedModels/hrnetv2_w48_imagenet_pretrained.pth'
__C.RESUME = False # contine training
__C.RESUME_PATH = '/data2/Projects/exp/09-26_14-11_SHHA_VGG16_FPN/latest_state.pth'
__C.GPU_ID = '0' # sigle gpu: [0], [1] ...; multi gpus: [0,1]
__C.OPT = 'Adam' #'Adam'
# learning rate settings
if __C.OPT == 'Adam':
__C.LR_BASE_NET = 1e-5 # learning rate
__C.LR_BM_NET = 1e-6 # learning rate
__C.LR_DECAY = 0.99 # no use
__C.NUM_EPOCH_LR_DECAY = 4 # no use
__C.LR_DECAY_START = 10 # no use
__C.MAX_EPOCH = 600
__C.PRINT_FREQ = 20
now = time.strftime("%m-%d_%H-%M", time.localtime())
__C.EXP_NAME = now \
+ '_' + __C.DATASET \
+ '_' + __C.NET
__C.EXP_PATH = './exp' # the path of logs, checkpoints, and current codes
#------------------------------VAL------------------------
__C.VAL_DENSE_START = 0
__C.VAL_FREQ = 4 # Before __C.VAL_DENSE_START epoches, the freq is set as __C.VAL_FREQ
#------------------------------VIS------------------------
__C.VISIBLE_NUM_IMGS = 1 # must be 1 for training images with the different sizes
#================================================================================
#================================================================================
#================================================================================