-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinitCFNN.m
90 lines (77 loc) · 3.72 KB
/
initCFNN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function [model, param, net] = initCFNN(img, pos, target_sz)
model = {};
param = readParam();
fixed_area = 80^2;
param.area_resize_factor = sqrt(fixed_area/prod(target_sz));
img = imresize(img,param.area_resize_factor);
pos = floor(pos * param.area_resize_factor);
target_sz = floor(target_sz * param.area_resize_factor);
param.output_sigma = sqrt(prod(target_sz)) * param.output_sigma_factor / param.features.cell_size;
if size(img,3)==1
%display('Input image has single channel. We have shut off the color feature extraction.');
%param.features.colorName = 0;
repmat(img,[1,1,3]);
end
param.window_sz = floor(target_sz * (1 + param.padding));
% param.window_sz = round(param.window_sz/param.features.cell_size)*param.features.cell_size;%make it a mutiple of 4
if param.features.greyHoG
param.features.sz=floor(param.window_sz / param.features.cell_size);
else
param.features.sz = param.window_sz;
param.features.cell_size = 1;
end
param.cos_window = hann(param.features.sz(1)) *hann(param.features.sz(2))';
param.features.szBG = 2*param.features.sz-1;
param.windowszBG = param.features.cell_size*param.features.szBG;
param.window_scale = param.windowszBG/param.window_sz;
param.cos_window_BG = hann(param.features.szBG(1))*hann(param.features.szBG(2))';
model.yf = fft2(gaussian_shaped_labels(param.output_sigma, param.features.sz));
patch = getPatch(img,pos,param.window_sz, param.window_sz);
rawdata = prepareData(patch, param.features);
data = calculateFeatures(rawdata, param.features,param.cos_window);
%create model
[model.model_xf, model.model_alphaf] = calculateModel(data,model.yf,param.lambda);
%%====== NN parameter ======
numchn = size(data,3);
for n_lambda = 1:5
Wc= real(ifft2(bsxfun(@times,conj(model.model_xf), model.model_alphaf{n_lambda})));
Wc1=rot90(Wc,2);
Wc_convNet(:,:,:,n_lambda) = Wc1;
end
bc = normrnd(0,0.0001,[1 5]);
% Wf = 0.2*ones(1, 5)+normrnd(0,0.001,[1 5]);
sz_Wf = [7,7];
[rs,cs]=ndgrid((1:sz_Wf(1))-ceil(sz_Wf(1)/2),(1:sz_Wf(2))-ceil(sz_Wf(2)/2));
Wf = exp(-0.5/1^2*(rs.^2+cs.^2));
Wf = 0.2*repmat(Wf,1,1,5)+normrnd(0,0.001,[7,7,5]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wc1=rot90(Wc,2);
% Wc_convNet = reshape(Wc1,size(Wc1,1),size(Wc1,2),1,size(Wc1,3));
net.layers = {};
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{single(Wc_convNet), single(bc)}}, ...
'learningRate', [.005 0.0005], ...
'filtersLearningRate', .005, ...
'biasesLearningRate', .0005, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'convt', ...
'weights', {{reshape(single(Wf),7,7,1,5), []}}, ...
'learningRate', [.005 0.0], ...
'filtersLearningRate', 0.005, ...
'biasesLearningRate', 0.0, ...
'stride', 1, ...
'pad', 0,...
'upsample',4,...
'crop',[3,0,3,0]) ;
net = vl_simplenn_tidy(net) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param.features.numchn = numchn;
model.original_sz = target_sz;
model.last_pos=pos;
model.last_target_sz = target_sz;
model.target_sz = target_sz;
model.pos = pos;
param.target_sz = target_sz;
end