-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
379 lines (310 loc) · 15.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from scipy.special import iv
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from layers import BatchMultiHeadGraphAttention, GraphConv, GATEncoderGraph
class BatchGAT(nn.Module):
def __init__(self, pretrained_emb_dim, vertex_feature_dim, use_vertex_feature,
n_units=[1433, 8, 7], n_heads=[8, 1],
dropout=0.1, attn_dropout=0.0,
instance_normalization=False):
super(BatchGAT, self).__init__()
self.n_layer = len(n_units) - 1
self.dropout = dropout
self.inst_norm = instance_normalization
if self.inst_norm:
self.norm = nn.InstanceNorm1d(pretrained_emb_dim, momentum=0.0, affine=True)
n_units[0] += pretrained_emb_dim
self.use_vertex_feature = use_vertex_feature
if self.use_vertex_feature:
n_units[0] += vertex_feature_dim
self.layer_stack = nn.ModuleList()
for i in range(self.n_layer):
# consider multi head from last layer
f_in = n_units[i] * n_heads[i - 1] if i else n_units[i]
self.layer_stack.append(
BatchMultiHeadGraphAttention(n_heads[i], f_in=f_in,
f_out=n_units[i + 1], attn_dropout=attn_dropout)
)
def forward(self, x, adj, emb, vertex_features):
if self.inst_norm:
emb = self.norm(emb.transpose(1, 2)).transpose(1, 2)
x = torch.cat((x, emb), dim=2)
if self.use_vertex_feature:
x = torch.cat((x, vertex_features), dim=2)
bs, n = adj.size()[:2]
for i, gat_layer in enumerate(self.layer_stack):
x = gat_layer(x, adj) # bs x n_head x n x f_out
if i + 1 == self.n_layer:
x = x.mean(dim=1)
else:
x = F.elu(x.transpose(1, 2).contiguous().view(bs, n, -1))
x = F.dropout(x, self.dropout, training=self.training)
return F.log_softmax(x, dim=-1), None
class SoftPoolingGATEncoder(GATEncoderGraph):
def __init__(self, max_num_nodes, input_dim, hidden_dim, embedding_dim, label_dim, num_layers,
assign_hidden_dim, n_head, attn_dropout, use_diffpool, use_deepinf,
assign_ratio=0.5, assign_num_layers=-1, num_pooling=1,
pred_hidden_dims=[50], concat=True, bn=False, dropout=0.0, linkpred=True,
assign_input_dim=-1, args=None, attn_type="aa"):
'''
Args:
num_layers: number of gc layers before each pooling
num_nodes: number of nodes for each graph in batch
linkpred: flag to turn on link prediction side objective
'''
super(SoftPoolingGATEncoder, self).__init__(input_dim, hidden_dim, embedding_dim, label_dim,
num_layers, n_head, attn_dropout,
pred_hidden_dims=pred_hidden_dims, concat=concat,
args=None, bn=bn, dropout=dropout, attn_type=attn_type)
self.num_pooling = num_pooling
self.linkpred = linkpred
self.assign_ent = True
self.args = args
self.use_diffpool = use_diffpool
self.use_deepinf = use_deepinf
# GC
self.conv_first_after_pool = nn.ModuleList()
self.conv_block_after_pool = nn.ModuleList()
self.conv_last_after_pool = nn.ModuleList()
for i in range(num_pooling): # conv on clusters
# use self to register the modules in self.modules()
conv_first2, conv_block2, conv_last2 = self.build_conv_layers(
num_layers, n_head, self.pred_input_dim, hidden_dim,
embedding_dim, attn_dropout, attn_mask=False, attn_type=attn_type
)
conv_block2 = nn.ModuleList()
self.conv_first_after_pool.append(conv_first2)
self.conv_block_after_pool.append(conv_block2)
self.conv_last_after_pool.append(conv_last2)
# assignment
assign_dims = []
if assign_num_layers == -1:
assign_num_layers = num_layers
if assign_input_dim == -1:
assign_input_dim = input_dim
self.assign_conv_first_modules = nn.ModuleList()
self.assign_conv_block_modules = nn.ModuleList()
self.assign_conv_last_modules = nn.ModuleList()
self.assign_pred_modules = nn.ModuleList()
assign_dim = int(max_num_nodes * assign_ratio)
for i in range(num_pooling):
if i == 0:
cur_attn_mask = True
else:
cur_attn_mask = False # old False
assign_dims.append(assign_dim)
assign_conv_first, assign_conv_block, assign_conv_last = self.build_conv_layers(
assign_num_layers, n_head, assign_input_dim, assign_hidden_dim, assign_dim, attn_dropout, cur_attn_mask,
attn_type=attn_type)
assign_conv_block = nn.ModuleList()
assign_pred_input_dim = assign_hidden_dim * (num_layers - 1) + assign_dim if concat else assign_dim
assign_pred = self.build_pred_layers(assign_pred_input_dim, [], assign_dim, num_aggs=1)
# next pooling layer
assign_input_dim = self.pred_input_dim
assign_dim = int(assign_dim * assign_ratio)
self.assign_conv_first_modules.append(assign_conv_first)
self.assign_conv_block_modules.append(assign_conv_block)
self.assign_conv_last_modules.append(assign_conv_last)
self.assign_pred_modules.append(assign_pred)
self.pred_model = self.build_pred_layers(self.pred_input_dim * (num_pooling + 1), pred_hidden_dims,
label_dim, num_aggs=self.num_aggs)
for m in self.modules():
if isinstance(m, GraphConv):
m.weight.data = init.xavier_uniform(m.weight.data, gain=nn.init.calculate_gain('relu'))
if m.bias is not None:
m.bias.data = init.constant(m.bias.data, 0.0)
if use_diffpool and use_deepinf:
self.merge_fc_2 = nn.Linear(label_dim + self.pred_input_dim, label_dim)
init.xavier_normal_(self.merge_fc_2.weight.data)
def forward(self, x, adj, batch_num_nodes, **kwargs):
if 'assign_x' in kwargs:
x_a = kwargs['assign_x']
else:
x_a = x
# mask
max_num_nodes = adj.size()[1]
if batch_num_nodes is not None:
embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
else:
embedding_mask = None
out_all = []
embedding_tensor, emb_first = self.gcn_forward(x, adj,
self.conv_first, self.conv_block, self.conv_last, embedding_mask)
# out, _ = torch.max(embedding_tensor, dim=1)
out = torch.sum(embedding_tensor, dim=1)
out_all.append(out)
if self.num_aggs == 2:
out = torch.sum(embedding_tensor, dim=1)
out_all.append(out)
first_assignment_mat = None
for i in range(self.num_pooling):
if batch_num_nodes is not None and i == 0:
embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
else:
embedding_mask = None
self.assign_tensor, _ = self.gcn_forward(x_a, adj,
self.assign_conv_first_modules[i],
self.assign_conv_block_modules[i],
self.assign_conv_last_modules[i],
embedding_mask)
# [batch_size x num_nodes x next_lvl_num_nodes]
self.assign_tensor = nn.Softmax(dim=-1)(self.assign_pred_modules[i](self.assign_tensor))
if embedding_mask is not None:
self.assign_tensor = self.assign_tensor * embedding_mask
if i == 0:
first_assignment_mat = self.assign_tensor.clone().detach()
# update pooled features and adj matrix
x = torch.matmul(torch.transpose(self.assign_tensor, 1, 2), embedding_tensor)
adj = torch.transpose(self.assign_tensor, 1, 2) @ adj @ self.assign_tensor
x_a = x
embedding_tensor, cluster_emb_first = self.gcn_forward(x, adj,
self.conv_first_after_pool[i],
self.conv_block_after_pool[i],
self.conv_last_after_pool[i])
# out, _ = torch.max(embedding_tensor, dim=1)
out = torch.sum(embedding_tensor, dim=1)
out_all.append(out)
if self.num_aggs == 2:
out = torch.sum(embedding_tensor, dim=1)
out_all.append(out)
if self.concat:
output = torch.cat(out_all, dim=1)
else:
output = out
ypred = self.pred_model(output)
return ypred, first_assignment_mat
class BatchWrapDiffGATPool(nn.Module):
def __init__(self, pretrained_emb_dim, vertex_feature_dim, use_vertex_feature,
n_units=[1433, 8, 7], n_heads=[8, 1],
dropout=0.1, attn_dropout=0.0,
instance_normalization=False, use_diffpool=True, use_deepinf=True, use_prone=True,
mu=1, theta=3.5, num_pooling=1, args=None, use_pretrain=True, attn_type="aa"):
super(BatchWrapDiffGATPool, self).__init__()
self.n_layer = len(n_units) - 1
self.dropout = dropout
self.inst_norm = instance_normalization
self.use_prone = use_prone
self.use_diffpool = use_diffpool
if self.inst_norm:
self.norm = nn.InstanceNorm1d(pretrained_emb_dim, momentum=0.0, affine=True)
self.use_pretrain = use_pretrain
if self.use_pretrain:
n_units[0] += pretrained_emb_dim
self.use_vertex_feature = use_vertex_feature
if self.use_vertex_feature:
n_units[0] += vertex_feature_dim
second_order_dim = 16
if self.use_pretrain and self.use_vertex_feature:
self.emb_second_order = nn.ModuleList([
nn.Linear(2, second_order_dim),
nn.Linear(pretrained_emb_dim, second_order_dim),
nn.Linear(vertex_feature_dim, second_order_dim)
])
if not self.use_pretrain and self.use_vertex_feature:
self.emb_second_order_wo_emb = nn.ModuleList([
nn.Linear(2, second_order_dim),
# nn.Linear(pretrained_emb_dim, second_order_dim),
nn.Linear(vertex_feature_dim, second_order_dim)
])
if self.use_pretrain and not self.use_vertex_feature:
self.emb_second_order_wo_vf = nn.ModuleList([
nn.Linear(2, second_order_dim),
nn.Linear(pretrained_emb_dim, second_order_dim),
# nn.Linear(vertex_feature_dim, second_order_dim)
])
self.layer_stack = nn.ModuleList()
n_units[-1] = 5
label_dim = 32
# node_feature_input_dim = n_units[0]
node_feature_input_dim = n_units[0] + second_order_dim
self.pool_layer = SoftPoolingGATEncoder(max_num_nodes=32, input_dim=node_feature_input_dim, hidden_dim=16,
embedding_dim=16, label_dim=label_dim, num_layers=2,
assign_hidden_dim=32, n_head=n_heads[0], attn_dropout=attn_dropout,
use_diffpool=use_diffpool, use_deepinf=use_deepinf,
num_pooling=num_pooling, bn=True, dropout=self.dropout, args=args,
attn_type=attn_type)
if self.use_diffpool:
self.fc_after_pool = nn.Linear(label_dim, 2)
else:
self.fc_after_prone = nn.Linear(node_feature_input_dim, 2)
self.mu = torch.nn.Parameter(torch.FloatTensor(1))
self.theta = theta
self.order = 3
torch.nn.init.constant_(self.mu, mu)
def added_forward(self, batch_adj, batch_feature):
batchsize, nodenum, feature_dim = batch_feature.shape
A = batch_adj
rowsum = torch.sum(batch_adj, dim=2)
d_inv = torch.pow(rowsum, -1.)
d_inv[torch.isinf(d_inv)] = 0
d_inv = d_inv.unsqueeze(2)
d_inv = d_inv.expand_as(A)
DA = d_inv * A
identity = torch.eye(nodenum)
if torch.cuda.is_available():
identity = identity.cuda()
L = identity - DA
M = L - self.mu * identity
M = torch.cuda.FloatTensor(M)
Lx0 = torch.eye(nodenum)
Lx0 = Lx0.unsqueeze(0).expand_as(M)
if torch.cuda.is_available():
Lx0 = Lx0.cuda()
Lx1 = 0.5 * (torch.bmm(M, M) - Lx0)
# ----------------------------------------------------
conv = iv(0, self.theta) * Lx0
conv -= 2 * iv(1, self.theta) * Lx1
for i in range(2, self.order):
Lx2 = torch.bmm(M, Lx1)
Lx2 = (torch.bmm(M, Lx2) - Lx1) - Lx0
if i % 2 == 0:
conv += 2 * iv(i, self.theta) * Lx2
else:
conv -= 2 * iv(i, self.theta) * Lx2
Lx0 = Lx1
Lx1 = Lx2
mm = torch.bmm(conv, batch_feature)
return mm
def add_fm(self, x, emb, vertex_features):
if self.use_pretrain and self.use_vertex_feature:
input_x_cat = [x, emb, vertex_features]
fm_second_order_emb_arr = [w(input_x_cat[f_idx]) for f_idx, w in enumerate(self.emb_second_order)]
elif self.use_vertex_feature and not self.use_pretrain:
input_x_cat = [x, vertex_features]
fm_second_order_emb_arr = [w(input_x_cat[f_idx]) for f_idx, w in enumerate(self.emb_second_order_wo_emb)]
elif not self.use_vertex_feature and self.use_pretrain:
input_x_cat = [x, emb]
fm_second_order_emb_arr = [w(input_x_cat[f_idx]) for f_idx, w in enumerate(self.emb_second_order_wo_vf)]
else:
raise
fm_sum_second_order_emb = sum(fm_second_order_emb_arr)
fm_sum_second_order_emb_square = fm_sum_second_order_emb * fm_sum_second_order_emb # (x+y)^2
fm_second_order_emb_square = [item * item for item in fm_second_order_emb_arr]
fm_second_order_emb_square_sum = sum(fm_second_order_emb_square) # x^2+y^2
fm_second_order = (fm_sum_second_order_emb_square - fm_second_order_emb_square_sum) * 0.5
out_inter = fm_second_order
return out_inter
def forward(self, x, adj, emb, vertex_features):
xx = self.add_fm(x, emb, vertex_features)
if self.inst_norm:
emb = self.norm(emb.transpose(1, 2)).transpose(1, 2)
if self.use_pretrain:
x_2 = torch.cat((x, emb), dim=2)
else:
x_2 = x
if self.use_vertex_feature:
x_2 = torch.cat((x_2, vertex_features), dim=2)
xx = torch.cat((x_2, xx), dim=2)
# xx = x_2
if self.use_prone:
xx = self.added_forward(adj, xx)
assign_mat = None
if self.use_diffpool:
xx, assign_mat = self.pool_layer(xx, adj.float(), None)
x = self.fc_after_pool(F.relu(xx))
else:
xx = xx[:, 0, :]
x = self.fc_after_prone(F.relu(xx))
return F.log_softmax(x, dim=-1), assign_mat