-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.go
240 lines (211 loc) · 5.87 KB
/
util.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
package crazy
import (
"crypto/rand"
"encoding/binary"
mathrand "math/rand"
)
// XorCompose composes two Sources using XOR.
type XorCompose struct {
A, B Source
}
// Read produces random bits from the composition of the two sources: A ^ B.
func (x XorCompose) Read(p []byte) (int, error) {
buf := make([]byte, len(p))
x.A.Read(p)
x.B.Read(buf)
for i, v := range buf {
p[i] ^= v
}
return len(p), nil
}
// SelectCompose composes three sources such that each bit of S chooses which
// of A and B has its corresponding bit chosen.
type SelectCompose struct {
S, A, B Source
}
// Read produces random bits selected randomly between A and B.
func (x SelectCompose) Read(p []byte) (int, error) {
s, b := make([]byte, len(p)), make([]byte, len(p))
x.S.Read(s)
x.A.Read(p)
x.B.Read(b)
for i := range p {
p[i] ^= (p[i] ^ b[i]) & s[i]
}
return len(p), nil
}
type (
math2crazy struct {
mathrand.Source
}
math642crazy struct {
mathrand.Source64
}
)
// AdaptRand turns a math/rand Source into a crazy Seeder. If the argument
// already implements Seeder, it is returned directly. Otherwise, if the
// argument does not implement math/rand Source64, then to ensure a full
// distribution, the Read() method of this Seeder uses two Int63() calls per
// eight bytes of output, using one fewer call when the output is not divisible
// by 8. The SeedIV() method of the returned interface uses only up to the
// first eight bytes of the argument.
func AdaptRand(src mathrand.Source) Seeder {
if s, ok := src.(Seeder); ok {
return s
}
if s, ok := src.(mathrand.Source64); ok {
return math642crazy{s}
}
return math2crazy{src}
}
// AdaptRand64 is like AdaptRand but takes a math/rand Source64 instead.
func AdaptRand64(src mathrand.Source64) Seeder {
if s, ok := src.(Seeder); ok {
return s
}
return math642crazy{src}
}
func (m math2crazy) Read(p []byte) (n int, err error) {
n = len(p)
for len(p) > 8 {
binary.LittleEndian.PutUint64(p, uint64(m.Int63()^m.Int63()<<1))
p = p[8:]
}
b := [8]byte{}
binary.LittleEndian.PutUint64(b[:], uint64(m.Int63()))
copy(p, b[:])
return n, nil
}
func (m math642crazy) Read(p []byte) (n int, err error) {
n = len(p)
for len(p) > 8 {
binary.LittleEndian.PutUint64(p, m.Uint64())
p = p[8:]
}
b := [8]byte{}
binary.LittleEndian.PutUint64(b[:], m.Uint64())
copy(p, b[:])
return n, nil
}
func (m math2crazy) SeedIV(iv []byte) {
b := [8]byte{}
copy(b[:], iv)
m.Seed(int64(binary.LittleEndian.Uint64(b[:])))
}
func (m math642crazy) SeedIV(iv []byte) {
b := [8]byte{}
copy(b[:], iv)
m.Seed(int64(binary.LittleEndian.Uint64(b[:])))
}
type crazy2math struct {
Seeder
}
// AdaptCrazy turns a crazy Seeder into a math/rand Source64. If the argument
// already implements math/rand.Source64, it is returned directly.
func AdaptCrazy(src Seeder) mathrand.Source64 {
if m, ok := src.(mathrand.Source64); ok {
return m
}
return crazy2math{src}
}
func (c crazy2math) Uint64() uint64 {
return RNG{c.Seeder}.Uint64()
}
func (c crazy2math) Int63() int64 {
return int64(RNG{c.Seeder}.Uint64() >> 1)
}
func (c crazy2math) Seed(x int64) {
SeedInt64(c.Seeder, x)
}
// RandString creates a random string with specified length using only
// characters from the given alphabet. The mechanism for constructing the
// string is choosing random positions from the alphabet, so characters which
// appear more often have higher relative probability.
func RandString(rng RNG, alphabet string, length int) string {
p := make([]rune, length)
a := []rune(alphabet)
for i := range p {
p[i] = a[int(rng.Uintn(uint(len(a))))]
}
return string(p)
}
// Swapper provides an interface for shuffling. This is a strict subset of
// sort.Interface.
type Swapper interface {
Swap(i, j int)
Len() int
}
// Shuffle permutes the elements of data into a random order.
func Shuffle(data Swapper, rng RNG) {
n := data.Len()
for i := 0; i < n; i++ {
data.Swap(i, int(rng.Uintn(uint(n))))
}
}
// ShuffleFloat64s permutes a slice of float64s into a random order.
func ShuffleFloat64s(data []float64, rng RNG) {
for i := range data {
k := rng.Intn(len(data))
data[i], data[k] = data[k], data[i]
}
}
// ShuffleInts permutes a slice of ints into a random order.
func ShuffleInts(data []int, rng RNG) {
for i := range data {
k := rng.Intn(len(data))
data[i], data[k] = data[k], data[i]
}
}
// ShuffleStrings permutes a slice of strings into a random order.
func ShuffleStrings(data []string, rng RNG) {
for i := range data {
k := rng.Intn(len(data))
data[i], data[k] = data[k], data[i]
}
}
// Yield sends values generated from the given distribution. It stops and
// returns once a value is received over the quit channel, if that channel is
// not nil. Useful for safely accessing variates from multiple goroutines.
func Yield(from Distribution, over chan<- float64, quit <-chan struct{}) {
go func() {
for {
select {
case over <- from.Next():
case <-quit:
return
}
}
}()
}
// YieldUint64 sends uint64s from the given RNG. It stops and returns once a
// value is received over the quit channel, if that channel is not nil. Useful
// for safely accessing values from multiple goroutines.
func YieldUint64(from RNG, over chan<- uint64, quit <-chan struct{}) {
go func() {
for {
select {
case over <- from.Uint64():
case <-quit:
return
}
}
}()
}
// StopYielding is a value to tell a yielder to stop. You can also close the
// quit channel if you won't need it again.
var StopYielding struct{}
// SeedInt64 seeds a Seeder using an int64. Specifically, it uses the
// little-endian representation of the int64 as the initialization vector.
func SeedInt64(src Seeder, seed int64) {
b := [8]byte{}
binary.LittleEndian.PutUint64(b[:], uint64(seed))
src.SeedIV(b[:])
}
// CryptoSeeded seeds a Seeder with n random bytes from crypto/rand.Reader and
// returns src.
func CryptoSeeded(src Seeder, n int) Seeder {
iv := make([]byte, n)
rand.Read(iv)
src.SeedIV(iv)
return src
}