-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTokenizer.py
109 lines (83 loc) · 3.57 KB
/
Tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import re
import pathlib
import tensorflow as tf
import tensorflow_text as tf_text
reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]
START = tf.argmax(tf.constant(reserved_tokens) == "[START]")
END = tf.argmax(tf.constant(reserved_tokens) == "[END]")
def add_start_end(ragged):
count = ragged.bounding_shape()[0]
starts = tf.fill([count, 1], START)
ends = tf.fill([count, 1], END)
return tf.concat([starts, ragged, ends], axis=1)
def cleanup_text(reserved_tokens_, token_txt):
# Drop the reserved tokens, except for "[UNK]".
bad_tokens = [re.escape(tok) for tok in reserved_tokens_ if tok != "[UNK]"]
bad_token_re = "|".join(bad_tokens)
bad_cells = tf.strings.regex_full_match(token_txt, bad_token_re)
result = tf.ragged.boolean_mask(token_txt, ~bad_cells)
# Join them into strings.
result = tf.strings.reduce_join(result, separator=' ', axis=-1)
return result
class CustomTokenizer(tf.Module):
def __init__(self, reserved_tokens_, vocab_path):
self.tokenizer = tf_text.BertTokenizer(vocab_path, lower_case=True)
self._reserved_tokens = reserved_tokens_
self._vocab_path = tf.saved_model.Asset(vocab_path)
vocab = pathlib.Path(vocab_path).read_text(encoding="utf-8").splitlines()
self.vocab = tf.Variable(vocab)
# Include a tokenize signature for a batch of strings.
self.tokenize.get_concrete_function(tf.TensorSpec(shape=[None], dtype=tf.string))
# Include `detokenize` and `lookup` signatures for:
# * `Tensors` with shapes [tokens] and [batch, tokens]
# * `RaggedTensors` with shape [batch, tokens]
self.detokenize.get_concrete_function(
tf.TensorSpec(shape=[None, None], dtype=tf.int64))
self.detokenize.get_concrete_function(
tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int64))
self.lookup.get_concrete_function(
tf.TensorSpec(shape=[None, None], dtype=tf.int64))
self.lookup.get_concrete_function(
tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int64))
# These `get_*` methods take no arguments
self.get_vocab_size.get_concrete_function()
self.get_vocab_path.get_concrete_function()
self.get_reserved_tokens.get_concrete_function()
@tf.function
def tokenize(self, strings):
enc = self.tokenizer.tokenize(strings)
# Merge the `word` and `word-piece` axes.
enc = enc.merge_dims(-2, -1)
enc = add_start_end(enc)
return enc
@tf.function
def detokenize(self, tokenized):
words = self.tokenizer.detokenize(tokenized)
return cleanup_text(self._reserved_tokens, words)
@tf.function
def lookup(self, token_ids):
return tf.gather(self.vocab, token_ids)
@tf.function
def get_vocab_size(self):
return tf.shape(self.vocab)[0]
@tf.function
def get_vocab_path(self):
return self._vocab_path
@tf.function
def get_reserved_tokens(self):
return tf.constant(self._reserved_tokens)
if __name__ == '__main__':
tokenizers = tf.Module()
tokenizers.en = CustomTokenizer(reserved_tokens, 'vocab_dict.txt')
# vocab size
print(tokenizers.en.get_vocab_size().numpy())
# encode
tokens = tokenizers.en.tokenize(['我爱你'])
print(tokens.to_tensor())
pad_tokens = tf_text.pad_model_inputs(tokens, max_seq_length=30)
print(pad_tokens)
text_tokens = tokenizers.en.lookup(tokens)
print(text_tokens)
# decode
round_trip = tokenizers.en.detokenize(tokens)
print(round_trip.numpy()[0].decode('utf-8'))