-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscreen_grab.py
68 lines (51 loc) · 2.04 KB
/
screen_grab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import cv2
from mouse import get_mouse_color
import mss
import numpy as np
def grab_screen():
with mss.mss() as sct:
monitor = sct.monitors[1] # 1 = First Monitor
screenshot = sct.grab(monitor)
# Convert the data to a numpy array and make it OpenCV-compatible
img = np.array(screenshot)[:, :, 0:3] # discard alpha channel (if any)
img_bgr = img[:, :, ::-1] # convert from RGB to BGR
return img_bgr
def crop_screen():
img = grab_screen()
height, width, channels = img.shape
# We are cropping the left third part of the image out
new_width = int(width * 2 / 3)
# In OpenCV, the image array is accessed as [y: y + h, x: x + w]
cropped_img = img[:, width - new_width:]
return cropped_img
def crop_item(min_width, max_width, min_height, max_height, item_number):
img = crop_screen()
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.bilateralFilter(gray, 5, 75, 75)
# Apply Canny edge detection
edges = cv2.Canny(blur, 15, 255)
# Find contours in the edged image
contours, _ = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Ensure the "Inventory" directory exists
if not os.path.exists("Inventory"):
os.makedirs("Inventory")
# Iterate over the contours
for contour in contours:
# Compute the bounding box for the contour
x, y, w, h = cv2.boundingRect(contour)
# If the rectangle meets the size criteria, save the cropped image
if min_width <= w <= max_width and min_height <= h <= max_height:
roi = rgb[y:y + h, x:x + w]
cv2.imwrite(f'Inventory/Item_{item_number}.png', roi)
print(f'Successfully Saved Item {item_number}')
def is_cell_empty():
hsv = get_mouse_color()
# empty cell color
lower_range = np.array([0, 0, 0])
upper_range = np.array([179, 150, 17])
if np.all((hsv >= lower_range) & (hsv <= upper_range)):
return 1
else:
return 0