-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathaug_attn.py
392 lines (303 loc) · 14.3 KB
/
aug_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from tensorflow.keras.layers import Layer
from tensorflow.keras.layers import Conv2D, Conv1D
from tensorflow.keras.layers import Concatenate, concatenate, Reshape
# https://github.com/titu1994/keras-attention-augmented-convs/blob/master/attn_augconv.py
# most of the implementation is taken from this repo
# I extended to add 1-D CNN implementation.
# Even though, it's (the extension) not tested properly yet.
# Code is tested.
# Updated to be used in a tf graph
from tensorflow.keras import initializers
from tensorflow.keras import backend as K
import tensorflow as tf
def _conv_layer(filters, kernel_size, strides=(1, 1), padding='same', name=None):
return Conv2D(filters, kernel_size, strides=strides, padding=padding,
use_bias=True, kernel_initializer='he_normal', name=name)
def _conv_layer1d(ip, t_n, f_n, filters, kernel_size, strides=1, padding='same', name=None):
conv1 = Conv1D(filters, kernel_size, strides=strides, padding=padding,
use_bias=True, kernel_initializer='he_normal', name=name)(ip)
reshape = Reshape((t_n, 1, filters))(conv1)
return reshape
def _conv_layer1r(ip, t_n, f_n, filters, kernel_size, strides=1, padding='same', name=None):
reshape1 = Reshape((t_n, f_n))(ip)
conv1 = Conv1D(filters, kernel_size, strides=strides, padding=padding,
use_bias=True, kernel_initializer='he_normal', name=name)(reshape1)
reshape2 = Reshape((t_n, 1, filters))(conv1)
return reshape2
def _normalize_depth_vars(depth_k, depth_v, filters):
"""
Accepts depth_k and depth_v as either floats or integers
and normalizes them to integers.
Args:
depth_k: float or int.
depth_v: float or int.
filters: number of output filters.
Returns:
depth_k, depth_v as integers.
"""
if type(depth_k) == float:
depth_k = int(filters * depth_k)
else:
depth_k = int(depth_k)
if type(depth_v) == float:
depth_v = int(filters * depth_v)
else:
depth_v = int(depth_v)
return depth_k, depth_v
class AttentionAugmentation2D(Layer):
def __init__(self, depth_k, depth_v, num_heads, relative=True, **kwargs):
"""
Applies attention augmentation on a convolutional layer
output.
Args:
depth_k: float or int. Number of filters for k.
Computes the number of filters for `v`.
If passed as float, computed as `filters * depth_k`.
depth_v: float or int. Number of filters for v.
Computes the number of filters for `k`.
If passed as float, computed as `filters * depth_v`.
num_heads: int. Number of attention heads.
Must be set such that `depth_k // num_heads` is > 0.
relative: bool, whether to use relative encodings.
Raises:
ValueError: if depth_v or depth_k is not divisible by
num_heads.
Returns:
Output tensor of shape
- [Batch, Height, Width, Depth_V] if
channels_last data format.
- [Batch, Depth_V, Height, Width] if
channels_first data format.
"""
super(AttentionAugmentation2D, self).__init__(**kwargs)
if depth_k % num_heads != 0:
raise ValueError('`depth_k` (%d) is not divisible by `num_heads` (%d)' % (
depth_k, num_heads))
if depth_v % num_heads != 0:
raise ValueError('`depth_v` (%d) is not divisible by `num_heads` (%d)' % (
depth_v, num_heads))
if depth_k // num_heads < 1.:
raise ValueError('depth_k / num_heads cannot be less than 1 ! '
'Given depth_k = %d, num_heads = %d' % (
depth_k, num_heads))
if depth_v // num_heads < 1.:
raise ValueError('depth_v / num_heads cannot be less than 1 ! '
'Given depth_v = %d, num_heads = %d' % (
depth_v, num_heads))
self.depth_k = depth_k
self.depth_v = depth_v
self.num_heads = num_heads
self.relative = relative
self.axis = 1 if K.image_data_format() == 'channels_first' else -1
def build(self, input_shape):
self._shape = input_shape
# normalize the format of depth_v and depth_k
self.depth_k, self.depth_v = _normalize_depth_vars(self.depth_k, self.depth_v,
input_shape)
if self.axis == 1:
_, channels, height, width = input_shape
else:
_, height, width, channels = input_shape
if self.relative:
dk_per_head = self.depth_k // self.num_heads
# print(dk_per_head)
if dk_per_head == 0:
print('dk per head', dk_per_head)
self.key_relative_w = self.add_weight('key_rel_w',
shape=tf.TensorShape([2 * width - 1, dk_per_head]),
initializer=initializers.RandomNormal(stddev=dk_per_head ** -0.5))
# 2 * width - 1
self.key_relative_h = self.add_weight('key_rel_h',
shape=tf.TensorShape([2 * height - 1, dk_per_head]),
initializer=initializers.RandomNormal(stddev=dk_per_head ** -0.5))
# 2 * height - 1
else:
self.key_relative_w = None
self.key_relative_h = None
def call(self, inputs, **kwargs):
if self.axis == 1:
# If channels first, force it to be channels last for these ops
inputs = K.permute_dimensions(inputs, [0, 2, 3, 1])
q, k, v = tf.split(inputs, [self.depth_k, self.depth_k, self.depth_v], axis=-1)
q = self.split_heads_2d(q)
k = self.split_heads_2d(k)
v = self.split_heads_2d(v)
# scale query
depth_k_heads = self.depth_k / self.num_heads
q *= (depth_k_heads ** -0.5)
# [Batch, num_heads, height * width, depth_k or depth_v] if axis == -1
qk_shape = [self._batch, self.num_heads, self._height * self._width, self.depth_k // self.num_heads]
v_shape = [self._batch, self.num_heads, self._height * self._width, self.depth_v // self.num_heads]
flat_q = K.reshape(q, K.stack(qk_shape))
flat_k = K.reshape(k, K.stack(qk_shape))
flat_v = K.reshape(v, K.stack(v_shape))
# [Batch, num_heads, HW, HW]
logits = tf.matmul(flat_q, flat_k, transpose_b=True)
# Apply relative encodings
if self.relative:
h_rel_logits, w_rel_logits = self.relative_logits(q)
logits += h_rel_logits
logits += w_rel_logits
weights = K.softmax(logits, axis=-1)
attn_out = tf.matmul(weights, flat_v)
attn_out_shape = [self._batch, self.num_heads, self._height, self._width, self.depth_v // self.num_heads]
attn_out_shape = K.stack(attn_out_shape)
attn_out = K.reshape(attn_out, attn_out_shape)
attn_out = self.combine_heads_2d(attn_out)
# [batch, height, width, depth_v]
if self.axis == 1:
# return to [batch, depth_v, height, width] for channels first
attn_out = K.permute_dimensions(attn_out, [0, 3, 1, 2])
return attn_out
def compute_output_shape(self, input_shape):
output_shape = list(input_shape)
output_shape[self.axis] = self.depth_v
return tuple(output_shape)
def split_heads_2d(self, ip):
tensor_shape = K.shape(ip)
# batch, height, width, channels for axis = -1
tensor_shape = [tensor_shape[i] for i in range(len(self._shape))]
batch = tensor_shape[0]
height = tensor_shape[1]
width = tensor_shape[2]
channels = tensor_shape[3]
# Save the spatial tensor dimensions
self._batch = batch
self._height = height
self._width = width
ret_shape = K.stack([batch, height, width, self.num_heads, channels // self.num_heads])
split = K.reshape(ip, ret_shape)
transpose_axes = (0, 3, 1, 2, 4)
split = K.permute_dimensions(split, transpose_axes)
return split
def relative_logits(self, q):
shape = K.shape(q)
# [batch, num_heads, H, W, depth_v]
shape = [shape[i] for i in range(5)]
height = shape[2]
width = shape[3]
rel_logits_w = self.relative_logits_1d(q, self.key_relative_w, height, width,
transpose_mask=[0, 1, 2, 4, 3, 5])
rel_logits_h = self.relative_logits_1d(
K.permute_dimensions(q, [0, 1, 3, 2, 4]),
self.key_relative_h, width, height,
transpose_mask=[0, 1, 4, 2, 5, 3])
return rel_logits_h, rel_logits_w
def relative_logits_1d(self, q, rel_k, H, W, transpose_mask):
rel_logits = tf.einsum('bhxyd,md->bhxym', q, rel_k)
rel_logits = K.reshape(rel_logits, [-1, self.num_heads * H, W, 2 * W - 1])
rel_logits = self.rel_to_abs(rel_logits)
rel_logits = K.reshape(rel_logits, [-1, self.num_heads, H, W, W])
rel_logits = K.expand_dims(rel_logits, axis=3)
rel_logits = K.tile(rel_logits, [1, 1, 1, H, 1, 1])
rel_logits = K.permute_dimensions(rel_logits, transpose_mask)
rel_logits = K.reshape(rel_logits, [-1, self.num_heads, H * W, H * W])
return rel_logits
def rel_to_abs(self, x):
shape = K.shape(x)
shape = [shape[i] for i in range(3)]
B, Nh, L, = shape
col_pad = K.zeros(K.stack([B, Nh, L, 1]))
x = K.concatenate([x, col_pad], axis=3)
flat_x = K.reshape(x, [B, Nh, L * 2 * L])
flat_pad = K.zeros(K.stack([B, Nh, L - 1]))
flat_x_padded = K.concatenate([flat_x, flat_pad], axis=2)
final_x = K.reshape(flat_x_padded, [B, Nh, L + 1, 2 * L - 1])
final_x = final_x[:, :, :L, L - 1:]
return final_x
def combine_heads_2d(self, inputs):
# [batch, num_heads, height, width, depth_v // num_heads]
transposed = K.permute_dimensions(inputs, [0, 2, 3, 1, 4])
# [batch, height, width, num_heads, depth_v // num_heads]
shape = K.shape(transposed)
shape = [shape[i] for i in range(5)]
a, b = shape[-2:]
ret_shape = K.stack(shape[:-2] + [a * b])
# [batch, height, width, depth_v]
return K.reshape(transposed, ret_shape)
def get_config(self):
config = {
'depth_k': self.depth_k,
'depth_v': self.depth_v,
'num_heads': self.num_heads,
'relative': self.relative,
}
base_config = super(AttentionAugmentation2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def augmented_conv2d(ip, filters, kernel_size=(3, 3), strides=(1, 1),
depth_k=0.2, depth_v=0.2, num_heads=8, relative_encodings=True):
"""
Builds an Attention Augmented Convolution block.
Args:
ip: keras tensor.
filters: number of output filters.
kernel_size: convolution kernel size.
strides: strides of the convolution.
depth_k: float or int. Number of filters for k.
Computes the number of filters for `v`.
If passed as float, computed as `filters * depth_k`.
depth_v: float or int. Number of filters for v.
Computes the number of filters for `k`.
If passed as float, computed as `filters * depth_v`.
num_heads: int. Number of attention heads.
Must be set such that `depth_k // num_heads` is > 0.
relative_encodings: bool. Whether to use relative
encodings or not.
Returns:
a keras tensor.
"""
# input_shape = K.int_shape(ip)
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
depth_k, depth_v = _normalize_depth_vars(depth_k, depth_v, filters)
conv_out = _conv_layer(filters - depth_v, kernel_size, strides)(ip)
# Augmented Attention Block
qkv_conv = _conv_layer(2 * depth_k + depth_v, (1, 1), strides)(ip)
attn_out = AttentionAugmentation2D(depth_k, depth_v, num_heads, relative_encodings)(qkv_conv)
attn_out = _conv_layer(depth_v, kernel_size=(1, 1))(attn_out)
output = concatenate([conv_out, attn_out], axis=channel_axis)
return output
def augmented_conv1d(ip, shape, filters, kernel_size=3, strides=1, padding = 'same',
depth_k=0.2, depth_v=0.2, num_heads=2, relative_encodings=True):
"""
Builds an Attention Augmented Convolution block.
Args:
ip: keras tensor.
filters: number of output filters.
kernel_size: convolution kernel size.
strides: strides of the convolution.
depth_k: float or int. Number of filters for k.
Computes the number of filters for `v`.
If passed as float, computed as `filters * depth_k`.
depth_v: float or int. Number of filters for v.
Computes the number of filters for `k`.
If passed as float, computed as `filters * depth_v`.
num_heads: int. Number of attention heads.
Must be set such that `depth_k // num_heads` is > 0.
relative_encodings: bool. Whether to use relative
encodings or not.
Returns:
a keras tensor.
"""
if type(kernel_size) == int:
pass
else:
kernel_size = kernel_size[0]
if type(strides) == int:
pass
else:
strides = strides[0]
t_n = shape[0]
f_n = shape[1]
# input_shape = K.int_shape(ip)
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
depth_k, depth_v = _normalize_depth_vars(depth_k, depth_v, filters)
# print(kernel_size)
# print(strides)
conv_out = _conv_layer1d(ip, t_n, f_n, filters - depth_v, kernel_size, strides, padding = 'same')
# Augmented Attention Block
qkv_conv = _conv_layer1d(ip, t_n, f_n, 2 * depth_k + depth_v, 1, strides, padding = 'same')
attn_out = AttentionAugmentation2D(depth_k, depth_v, num_heads, relative_encodings)(qkv_conv)
attn_out = _conv_layer1r(attn_out, t_n, depth_v, depth_v, 1, strides, padding = 'same')
output = Concatenate(axis=channel_axis)([conv_out, attn_out])
reshape = Reshape((t_n, filters))(output)
return reshape