From b727a06ff43b73f3414546ba2d0441e5e795ab63 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 23 Nov 2020 17:07:00 +0000 Subject: [PATCH] deploy --- 404.html | 4 ++-- assets/js/48.00f0f07b.js | 1 - assets/js/48.5db85305.js | 1 + assets/js/52.3cf4fb83.js | 1 + assets/js/52.db8113da.js | 1 - assets/js/{app.375c2d8e.js => app.5908c34b.js} | 4 ++-- index.html | 4 ++-- langs/en/be-vs-ae.html | 6 +++--- langs/en/friends/_sidebar.html | 6 +++--- langs/en/friends/s01e01.html | 6 +++--- langs/en/friends/s01e02.html | 6 +++--- langs/en/friends/s01e03.html | 6 +++--- langs/en/learned-in-uk.html | 6 +++--- langs/en/misuses.html | 6 +++--- langs/en/others.html | 6 +++--- langs/index.html | 6 +++--- langs/jp/beginner-unit-1-3.html | 6 +++--- langs/jp/beginner-unit-4-6.html | 6 +++--- langs/jp/beginner-unit-7-9.html | 6 +++--- math/info-theory.html | 6 +++--- math/linear-algebra.html | 6 +++--- math/probability.html | 6 +++--- math/stats.html | 6 +++--- ml/grad-descent-algos.html | 6 +++--- ml/graphical-model.html | 6 +++--- ml/index.html | 6 +++--- ml/learning-theory.html | 6 +++--- ml/pca.html | 6 +++--- ml/pytorch.html | 6 +++--- ml/reinforcement-learning.html | 6 +++--- ml/rule-learning.html | 6 +++--- ml/svm.html | 6 +++--- others/causal-reasoning.html | 6 +++--- others/characters.html | 6 +++--- others/dynamic-programming.html | 6 +++--- others/genetics.html | 6 +++--- others/index.html | 6 +++--- others/minimax.html | 6 +++--- others/p-np.html | 6 +++--- others/workout.html | 6 +++--- programming/index.html | 6 +++--- programming/latex.html | 6 +++--- programming/python/cuda.html | 6 +++--- programming/python/matplotlib.html | 8 ++++---- programming/python/miniconda.html | 6 +++--- programming/python/mpi4py.html | 6 +++--- programming/python/mpl-scientific-style.html | 6 +++--- programming/python/python.html | 10 +++++----- programming/python/user-snippets.html | 6 +++--- reading/200-years-of-surgery.html | 6 +++--- software/index.html | 6 +++--- software/powershell.html | 6 +++--- software/shell.html | 6 +++--- software/vim.html | 6 +++--- software/windows/autohotkey.html | 6 +++--- software/windows/context-menu.html | 6 +++--- 56 files changed, 158 insertions(+), 158 deletions(-) delete mode 100644 assets/js/48.00f0f07b.js create mode 100644 assets/js/48.5db85305.js create mode 100644 assets/js/52.3cf4fb83.js delete mode 100644 assets/js/52.db8113da.js rename assets/js/{app.375c2d8e.js => app.5908c34b.js} (92%) diff --git a/404.html b/404.html index 75ca3ec6..eaa9e1ab 100644 --- a/404.html +++ b/404.html @@ -8,13 +8,13 @@ - +

404

How did we get here?
Take me home.
- + diff --git a/assets/js/48.00f0f07b.js b/assets/js/48.00f0f07b.js deleted file mode 100644 index feda7340..00000000 --- a/assets/js/48.00f0f07b.js +++ /dev/null @@ -1 +0,0 @@ -(window.webpackJsonp=window.webpackJsonp||[]).push([[48],{415:function(t,a,s){"use strict";s.r(a);var l=s(25),c=Object(l.a)({},(function(){var t=this,a=t.$createElement,s=t._self._c||a;return s("ContentSlotsDistributor",{attrs:{"slot-key":t.$parent.slotKey}},[s("h1",{attrs:{id:"matplotlib"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#matplotlib"}},[t._v("#")]),t._v(" Matplotlib")]),t._v(" "),s("div",{staticClass:"custom-block tip"},[s("p",{staticClass:"custom-block-title"},[t._v("TIP")]),t._v(" "),s("p",[t._v("https://github.com/matplotlib/cheatsheets")])]),t._v(" "),s("h2",{attrs:{id:"配置-configuration"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#配置-configuration"}},[t._v("#")]),t._v(" 配置 Configuration")]),t._v(" "),s("p",[t._v("配置文件")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#005CC5"}},[t._v("print")]),s("span",{staticStyle:{color:"#000000"}},[t._v("(matplotlib.matplotlib_fname())")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## e.g. C:\\Users\\\\Miniconda3\\lib\\site-packages\\matplotlib\\mpl-data\\matplotlibrc")])])])])]),s("p",[t._v("可以用来设置默认字体"),s("br"),t._v("\n(新安装的字体可能会找不到,删掉 "),s("code",[t._v("$HOME\\.matplotlib\\fontlist-*.json")]),t._v(" 缓存文件即可)")]),t._v(" "),s("p",[t._v("在程序中也可以进行配置,比如")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.rc(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"text"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("usetex")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("True")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.rc(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"font"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("family")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"serif"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.rc(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"font"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("**")]),s("span",{staticStyle:{color:"#000000"}},[t._v("{")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"sans-serif"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(": ")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"Consolas"')]),s("span",{staticStyle:{color:"#000000"}},[t._v("})")])])])])]),s("p",[t._v("一些默认值")]),t._v(" "),s("div",{staticClass:"language- extra-class"},[s("pre",[s("code",[t._v("figure.figsize: 6.4, 4.8 ## figure size in inches\n")])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"default-color-cycle"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#default-color-cycle"}},[t._v("#")]),t._v(" Default Color Cycle")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("prop_cycle ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" plt.rcParams[")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"axes.prop_cycle"')]),s("span",{staticStyle:{color:"#000000"}},[t._v("]")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("colors ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" prop_cycle.by_key()[")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"color"')]),s("span",{staticStyle:{color:"#000000"}},[t._v("]")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"让-x-y-轴等刻度"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#让-x-y-轴等刻度"}},[t._v("#")]),t._v(" 让 x, y 轴等刻度")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v('# plt.axis("equal")')])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## 一般来说上面的用法就够了,但是如果同时对 xlim, ylim 有要求的话,下方的用法更准确")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.gca().set_aspect(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"equal"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("adjustable")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"box"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"使用-colormap"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#使用-colormap"}},[t._v("#")]),t._v(" 使用 Colormap")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("from")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib.cm ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ScalarMappable")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("from")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib.colors ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" Normalize")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## The default colormap assumes range [0, 1]. `ScalarMappable` allows custom range.")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("min_value ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("-")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("1")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("max_value ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("1")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("mappable ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ScalarMappable(Normalize(min_value, max_value), ")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"bwr"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("mappable.set_array(np.array([min_value, max_value])) ")]),s("span",{staticStyle:{color:"#6A737D"}},[t._v("## Don't know why but `set_array` is needed")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("certain_patch.set_color(mappable.to_rgba(value))")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.colorbar(mappable)")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"保存图片时常用的设置"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#保存图片时常用的设置"}},[t._v("#")]),t._v(" 保存图片时常用的设置")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.savefig(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"filename.pdf"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("bbox_inches")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"tight"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.savefig(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"filename.png"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("bbox_inches")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"tight"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("dpi")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("200")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"colorbar"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#colorbar"}},[t._v("#")]),t._v(" Colorbar")]),t._v(" "),s("h3",{attrs:{id:"使-colorbar-刻度为整数"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#使-colorbar-刻度为整数"}},[t._v("#")]),t._v(" 使 colorbar 刻度为整数")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("from")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib.ticker ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" MaxNLocator")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("bar ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" fig.colorbar()")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("bar.locator ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" MaxNLocator(")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("integer")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("True")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("bar.update_ticks()")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## 如果是坐标轴的话")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("# plt.gca().yaxis.set_major_locator(MaxNLocator(integer=True))")])])])])]),s("h3",{attrs:{id:"使-colorbar-和作图内容的高度相符"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#使-colorbar-和作图内容的高度相符"}},[t._v("#")]),t._v(" 使 colorbar 和作图内容的高度相符")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("im ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" plt.imshow() ")]),s("span",{staticStyle:{color:"#6A737D"}},[t._v("## ...")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.colorbar(im, ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("fraction")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("0.046")]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("pad")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("0.4")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])])])])]),s("p",[t._v("不知道原理但是很神奇("),s("a",{attrs:{href:"https://stackoverflow.com/a/26720422",target:"_blank",rel:"noopener noreferrer"}},[t._v("更多讨论"),s("OutboundLink")],1),t._v(")")])])}),[],!1,null,null,null);a.default=c.exports}}]); \ No newline at end of file diff --git a/assets/js/48.5db85305.js b/assets/js/48.5db85305.js new file mode 100644 index 00000000..1a5bf9b2 --- /dev/null +++ b/assets/js/48.5db85305.js @@ -0,0 +1 @@ +(window.webpackJsonp=window.webpackJsonp||[]).push([[48],{415:function(t,a,s){"use strict";s.r(a);var l=s(25),c=Object(l.a)({},(function(){var t=this,a=t.$createElement,s=t._self._c||a;return s("ContentSlotsDistributor",{attrs:{"slot-key":t.$parent.slotKey}},[s("h1",{attrs:{id:"matplotlib"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#matplotlib"}},[t._v("#")]),t._v(" Matplotlib")]),t._v(" "),s("div",{staticClass:"custom-block tip"},[s("p",{staticClass:"custom-block-title"},[t._v("TIP")]),t._v(" "),s("p",[s("a",{attrs:{href:"https://github.com/matplotlib/cheatsheets",target:"_blank",rel:"noopener noreferrer"}},[t._v("https://github.com/matplotlib/cheatsheets"),s("OutboundLink")],1)])]),t._v(" "),s("h2",{attrs:{id:"配置-configuration"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#配置-configuration"}},[t._v("#")]),t._v(" 配置 Configuration")]),t._v(" "),s("p",[t._v("配置文件")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#005CC5"}},[t._v("print")]),s("span",{staticStyle:{color:"#000000"}},[t._v("(matplotlib.matplotlib_fname())")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## e.g. C:\\Users\\\\Miniconda3\\lib\\site-packages\\matplotlib\\mpl-data\\matplotlibrc")])])])])]),s("p",[t._v("可以用来设置默认字体"),s("br"),t._v("\n(新安装的字体可能会找不到,删掉 "),s("code",[t._v("$HOME\\.matplotlib\\fontlist-*.json")]),t._v(" 缓存文件即可)")]),t._v(" "),s("p",[t._v("在程序中也可以进行配置,比如")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.rc(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"text"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("usetex")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("True")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.rc(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"font"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("family")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"serif"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.rc(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"font"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("**")]),s("span",{staticStyle:{color:"#000000"}},[t._v("{")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"sans-serif"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(": ")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"Consolas"')]),s("span",{staticStyle:{color:"#000000"}},[t._v("})")])])])])]),s("p",[t._v("一些默认值")]),t._v(" "),s("div",{staticClass:"language- extra-class"},[s("pre",[s("code",[t._v("figure.figsize: 6.4, 4.8 ## figure size in inches\n")])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"default-color-cycle"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#default-color-cycle"}},[t._v("#")]),t._v(" Default Color Cycle")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("prop_cycle ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" plt.rcParams[")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"axes.prop_cycle"')]),s("span",{staticStyle:{color:"#000000"}},[t._v("]")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("colors ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" prop_cycle.by_key()[")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"color"')]),s("span",{staticStyle:{color:"#000000"}},[t._v("]")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"让-x-y-轴等刻度"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#让-x-y-轴等刻度"}},[t._v("#")]),t._v(" 让 x, y 轴等刻度")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v('# plt.axis("equal")')])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## 一般来说上面的用法就够了,但是如果同时对 xlim, ylim 有要求的话,下方的用法更准确")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.gca().set_aspect(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"equal"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("adjustable")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"box"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"使用-colormap"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#使用-colormap"}},[t._v("#")]),t._v(" 使用 Colormap")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("from")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib.cm ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ScalarMappable")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("from")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib.colors ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" Normalize")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## The default colormap assumes range [0, 1]. `ScalarMappable` allows custom range.")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("min_value ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("-")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("1")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("max_value ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("1")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("mappable ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" ScalarMappable(Normalize(min_value, max_value), ")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"bwr"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("mappable.set_array(np.array([min_value, max_value])) ")]),s("span",{staticStyle:{color:"#6A737D"}},[t._v("## Don't know why but `set_array` is needed")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("certain_patch.set_color(mappable.to_rgba(value))")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.colorbar(mappable)")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"保存图片时常用的设置"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#保存图片时常用的设置"}},[t._v("#")]),t._v(" 保存图片时常用的设置")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.savefig(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"filename.pdf"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("bbox_inches")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"tight"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.savefig(")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"filename.png"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("bbox_inches")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#032F62"}},[t._v('"tight"')]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("dpi")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("200")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])])])])]),s("hr"),t._v(" "),s("h2",{attrs:{id:"colorbar"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#colorbar"}},[t._v("#")]),t._v(" Colorbar")]),t._v(" "),s("h3",{attrs:{id:"使-colorbar-刻度为整数"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#使-colorbar-刻度为整数"}},[t._v("#")]),t._v(" 使 colorbar 刻度为整数")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#D73A49"}},[t._v("from")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" matplotlib.ticker ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("import")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" MaxNLocator")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("bar ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" fig.colorbar()")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("bar.locator ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" MaxNLocator(")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("integer")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("True")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("bar.update_ticks()")])]),t._v("\n\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("## 如果是坐标轴的话")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#6A737D"}},[t._v("# plt.gca().yaxis.set_major_locator(MaxNLocator(integer=True))")])])])])]),s("h3",{attrs:{id:"使-colorbar-和作图内容的高度相符"}},[s("a",{staticClass:"header-anchor",attrs:{href:"#使-colorbar-和作图内容的高度相符"}},[t._v("#")]),t._v(" 使 colorbar 和作图内容的高度相符")]),t._v(" "),s("div",{staticClass:"language-python extra-class"},[s("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[s("code",[s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("im ")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#000000"}},[t._v(" plt.imshow() ")]),s("span",{staticStyle:{color:"#6A737D"}},[t._v("## ...")])]),t._v("\n"),s("span",{staticClass:"line"},[s("span",{staticStyle:{color:"#000000"}},[t._v("plt.colorbar(im, ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("fraction")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("0.046")]),s("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),s("span",{staticStyle:{color:"#E36209"}},[t._v("pad")]),s("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),s("span",{staticStyle:{color:"#005CC5"}},[t._v("0.4")]),s("span",{staticStyle:{color:"#000000"}},[t._v(")")])])])])]),s("p",[t._v("不知道原理但是很神奇("),s("a",{attrs:{href:"https://stackoverflow.com/a/26720422",target:"_blank",rel:"noopener noreferrer"}},[t._v("更多讨论"),s("OutboundLink")],1),t._v(")")])])}),[],!1,null,null,null);a.default=c.exports}}]); \ No newline at end of file diff --git a/assets/js/52.3cf4fb83.js b/assets/js/52.3cf4fb83.js new file mode 100644 index 00000000..06aebb73 --- /dev/null +++ b/assets/js/52.3cf4fb83.js @@ -0,0 +1 @@ +(window.webpackJsonp=window.webpackJsonp||[]).push([[52],{419:function(t,s,a){"use strict";a.r(s);var l=a(25),o=Object(l.a)({},(function(){var t=this,s=t.$createElement,a=t._self._c||s;return a("ContentSlotsDistributor",{attrs:{"slot-key":t.$parent.slotKey}},[a("h1",{attrs:{id:"python"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#python"}},[t._v("#")]),t._v(" Python")]),t._v(" "),a("h2",{attrs:{id:"作用域-scope"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#作用域-scope"}},[t._v("#")]),t._v(" 作用域 (scope)")]),t._v(" "),a("ul",[a("li",[t._v("Python 程序由"),a("mark",[t._v("代码块")]),t._v("组成,包括模块 (mudule),类 (class),函数 (def) 等"),a("br"),t._v("\n注意 if,for 等语句不构成代码块")]),t._v(" "),a("li",[t._v("当变量在"),a("strong",[t._v("代码块")]),t._v("中被定义时,作用域为该代码块(局部变量)")])]),t._v(" "),a("h3",{attrs:{id:"变量名解析-legb-法则"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#变量名解析-legb-法则"}},[t._v("#")]),t._v(" 变量名解析 LEGB 法则")]),t._v(" "),a("div",{staticClass:"language-python extra-class"},[a("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[a("code",[a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#005CC5"}},[t._v("print")]),a("span",{staticStyle:{color:"#000000"}},[t._v("(")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("__name__")]),a("span",{staticStyle:{color:"#000000"}},[t._v(") ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Builtin")])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v("global_var ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("1")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Global")])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("def")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6F42C1"}},[t._v("outer")]),a("span",{staticStyle:{color:"#000000"}},[t._v("():")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v(" enclosing_var ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("2")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Enclosing (relative to `inner`)")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("def")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6F42C1"}},[t._v("inner")]),a("span",{staticStyle:{color:"#000000"}},[t._v("():")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v(" local_var ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("3")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Local")])])])])]),a("p",[a("a",{attrs:{href:"https://docs.python.org/3/reference/executionmodel.html",target:"_blank",rel:"noopener noreferrer"}},[t._v("Python 执行模型"),a("OutboundLink")],1)]),t._v(" "),a("h2",{attrs:{id:"格式化字符串-string-format"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#格式化字符串-string-format"}},[t._v("#")]),t._v(" 格式化字符串 (string format)")]),t._v(" "),a("div",{staticClass:"language-python extra-class"},[a("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[a("code",[a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#6A737D"}},[t._v('## Basics ## use "·" to visualize whitespace')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#032F62"}},[t._v('"{} {}"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(".format(")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("1")]),a("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("2")]),a("span",{staticStyle:{color:"#000000"}},[t._v(") ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "1·2"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{1}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{2}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "1·2"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Padding and alignment")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v("a ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"test"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "test······"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":<10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "test······"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":>10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "······test"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":^10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "···test···"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":_<10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "test______"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("!s")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## equals to f"{str(a)}"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("!r:10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## f"{repr(a):10}"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Floats")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v("b ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("0.5")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":5")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "··0.5" !!!')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":<5")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "0.5··"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("!s:5")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "0.5··"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":05")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "000.5"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":.3f")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "0.500"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":.3e")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "5.000e-01"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":.2%")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "50.00%"')])])])])]),a("p",[a("a",{attrs:{href:"https://pyformat.info/",target:"_blank",rel:"noopener noreferrer"}},[t._v("PyFormat (intuitive examples)"),a("OutboundLink")],1),a("br"),t._v(" "),a("a",{attrs:{href:"https://strftime.org/",target:"_blank",rel:"noopener noreferrer"}},[t._v("Python strftime reference"),a("OutboundLink")],1),a("br"),t._v(" "),a("a",{attrs:{href:"https://www.python.org/dev/peps/pep-3101/#format-specifiers",target:"_blank",rel:"noopener noreferrer"}},[t._v("PEP 3101 -- Standard Format Specifiers"),a("OutboundLink")],1)])])}),[],!1,null,null,null);s.default=o.exports}}]); \ No newline at end of file diff --git a/assets/js/52.db8113da.js b/assets/js/52.db8113da.js deleted file mode 100644 index efedac86..00000000 --- a/assets/js/52.db8113da.js +++ /dev/null @@ -1 +0,0 @@ -(window.webpackJsonp=window.webpackJsonp||[]).push([[52],{419:function(t,s,a){"use strict";a.r(s);var l=a(25),o=Object(l.a)({},(function(){var t=this,s=t.$createElement,a=t._self._c||s;return a("ContentSlotsDistributor",{attrs:{"slot-key":t.$parent.slotKey}},[a("h1",{attrs:{id:"python"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#python"}},[t._v("#")]),t._v(" Python")]),t._v(" "),a("h2",{attrs:{id:"作用域-scope"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#作用域-scope"}},[t._v("#")]),t._v(" 作用域 scope")]),t._v(" "),a("ul",[a("li",[t._v("Python 程序由"),a("mark",[t._v("代码块")]),t._v("组成,包括模块(mudule),类(class),函数(def)等"),a("br"),t._v("\nif,for 等语句不构成代码块")]),t._v(" "),a("li",[t._v("当变量在"),a("strong",[t._v("代码块")]),t._v("中被定义时,作用域为该代码块(局部变量)")])]),t._v(" "),a("h3",{attrs:{id:"变量名解析-legb-法则"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#变量名解析-legb-法则"}},[t._v("#")]),t._v(" 变量名解析 LEGB 法则")]),t._v(" "),a("div",{staticClass:"language-python extra-class"},[a("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[a("code",[a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#005CC5"}},[t._v("print")]),a("span",{staticStyle:{color:"#000000"}},[t._v("(")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("__name__")]),a("span",{staticStyle:{color:"#000000"}},[t._v(") ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Builtin")])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v("global_var ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("1")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Global")])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("def")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6F42C1"}},[t._v("outer")]),a("span",{staticStyle:{color:"#000000"}},[t._v("():")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v(" enclosing_var ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("2")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Enclosing (relative to `inner`)")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("def")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6F42C1"}},[t._v("inner")]),a("span",{staticStyle:{color:"#000000"}},[t._v("():")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v(" local_var ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("3")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Local")])])])])]),a("p",[a("a",{attrs:{href:"https://docs.python.org/3/reference/executionmodel.html",target:"_blank",rel:"noopener noreferrer"}},[t._v("Python 执行模型"),a("OutboundLink")],1)]),t._v(" "),a("h2",{attrs:{id:"格式化字符串-string-format"}},[a("a",{staticClass:"header-anchor",attrs:{href:"#格式化字符串-string-format"}},[t._v("#")]),t._v(" 格式化字符串 (string format)")]),t._v(" "),a("div",{staticClass:"language-python extra-class"},[a("pre",{staticClass:"shiki",staticStyle:{"background-color":"#fff"}},[a("code",[a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#6A737D"}},[t._v('## Basics ## use "·" to visualize whitespace')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#032F62"}},[t._v('"{} {}"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(".format(")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("1")]),a("span",{staticStyle:{color:"#000000"}},[t._v(", ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("2")]),a("span",{staticStyle:{color:"#000000"}},[t._v(") ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "1·2"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{1}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{2}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "1·2"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Padding and alignment")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v("a ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"test"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "test······"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":<10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "test······"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":>10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "······test"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":^10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "···test···"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":_<10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "test______"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("!s")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## equals to f"{str(a)}"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("a")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("!r:10")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## f"{repr(a):10}"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#6A737D"}},[t._v("## Floats")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#000000"}},[t._v("b ")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("=")]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("0.5")])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":5")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "··0.5" !!!')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":<5")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "0.5··"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v("!s:5")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "0.5··"')])]),t._v("\n\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":05")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "000.5"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":.3f")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "0.500"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":.3e")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "5.000e-01"')])]),t._v("\n"),a("span",{staticClass:"line"},[a("span",{staticStyle:{color:"#D73A49"}},[t._v("f")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("{")]),a("span",{staticStyle:{color:"#000000"}},[t._v("b")]),a("span",{staticStyle:{color:"#D73A49"}},[t._v(":.2%")]),a("span",{staticStyle:{color:"#005CC5"}},[t._v("}")]),a("span",{staticStyle:{color:"#032F62"}},[t._v('"')]),a("span",{staticStyle:{color:"#000000"}},[t._v(" ")]),a("span",{staticStyle:{color:"#6A737D"}},[t._v('## "50.00%"')])])])])]),a("p",[a("a",{attrs:{href:"https://pyformat.info/",target:"_blank",rel:"noopener noreferrer"}},[t._v("PyFormat (intuitive examples)"),a("OutboundLink")],1),a("br"),t._v(" "),a("a",{attrs:{href:"https://strftime.org/",target:"_blank",rel:"noopener noreferrer"}},[t._v("Python strftime reference"),a("OutboundLink")],1),a("br"),t._v(" "),a("a",{attrs:{href:"https://www.python.org/dev/peps/pep-3101/#format-specifiers",target:"_blank",rel:"noopener noreferrer"}},[t._v("PEP 3101 -- Standard Format Specifiers"),a("OutboundLink")],1)])])}),[],!1,null,null,null);s.default=o.exports}}]); \ No newline at end of file diff --git a/assets/js/app.375c2d8e.js b/assets/js/app.5908c34b.js similarity index 92% rename from assets/js/app.375c2d8e.js rename to assets/js/app.5908c34b.js index 1af09081..83bb9a70 100644 --- a/assets/js/app.375c2d8e.js +++ b/assets/js/app.5908c34b.js @@ -1,4 +1,4 @@ -(window.webpackJsonp=window.webpackJsonp||[]).push([[0],[]]);!function(t){function e(e){for(var r,a,c=e[0],u=e[1],s=e[2],f=0,p=[];f0?o(r(t),9007199254740991):0}},function(t,e){var n=Array.isArray;t.exports=n},function(t,e,n){var r=n(33),o=n(20);t.exports=function(t){return r(o(t))}},function(t,e){var n={}.toString;t.exports=function(t){return n.call(t).slice(8,-1)}},function(t,e,n){var r=n(142),o="object"==typeof self&&self&&self.Object===Object&&self,i=r||o||Function("return this")();t.exports=i},function(t,e,n){var r=n(5),o=n(1),i=n(6),a=Object.defineProperty,c={},u=function(t){throw t};t.exports=function(t,e){if(i(c,t))return c[t];e||(e={});var n=[][t],s=!!i(e,"ACCESSORS")&&e.ACCESSORS,l=i(e,0)?e[0]:u,f=i(e,1)?e[1]:void 0;return c[t]=!!n&&!o((function(){if(s&&!r)return!0;var t={length:-1};s?a(t,1,{enumerable:!0,get:u}):t[1]=1,n.call(t,l,f)}))}},function(t,e,n){var r=n(114),o=n(2),i=function(t){return"function"==typeof t?t:void 0};t.exports=function(t,e){return arguments.length<2?i(r[t])||i(o[t]):r[t]&&r[t][e]||o[t]&&o[t][e]}},function(t,e){t.exports=function(t){if(null==t)throw TypeError("Can't call method on "+t);return t}},function(t,e){t.exports=!1},function(t,e,n){var r=n(5),o=n(78),i=n(35),a=n(15),c=n(34),u=n(6),s=n(109),l=Object.getOwnPropertyDescriptor;e.f=r?l:function(t,e){if(t=a(t),e=c(e,!0),s)try{return l(t,e)}catch(t){}if(u(t,e))return i(!o.f.call(t,e),t[e])}},function(t,e){t.exports=function(t){if("function"!=typeof t)throw TypeError(String(t)+" is not a function");return t}},function(t,e,n){var r=n(225),o=n(228);t.exports=function(t,e){var n=o(t,e);return r(n)?n:void 0}},function(t,e,n){"use strict";function r(t,e,n,r,o,i,a,c){var u,s="function"==typeof t?t.options:t;if(e&&(s.render=e,s.staticRenderFns=n,s._compiled=!0),r&&(s.functional=!0),i&&(s._scopeId="data-v-"+i),a?(u=function(t){(t=t||this.$vnode&&this.$vnode.ssrContext||this.parent&&this.parent.$vnode&&this.parent.$vnode.ssrContext)||"undefined"==typeof __VUE_SSR_CONTEXT__||(t=__VUE_SSR_CONTEXT__),o&&o.call(this,t),t&&t._registeredComponents&&t._registeredComponents.add(a)},s._ssrRegister=u):o&&(u=c?function(){o.call(this,(s.functional?this.parent:this).$root.$options.shadowRoot)}:o),u)if(s.functional){s._injectStyles=u;var l=s.render;s.render=function(t,e){return u.call(e),l(t,e)}}else{var f=s.beforeCreate;s.beforeCreate=f?[].concat(f,u):[u]}return{exports:t,options:s}}n.d(e,"a",(function(){return r}))},function(t,e,n){"use strict";var r=n(0),o=n(31).filter,i=n(52),a=n(18),c=i("filter"),u=a("filter");r({target:"Array",proto:!0,forced:!c||!u},{filter:function(t){return o(this,t,arguments.length>1?arguments[1]:void 0)}})},function(t,e){t.exports=function(t){return null!=t&&"object"==typeof t}},function(t,e,n){var r,o=n(7),i=n(184),a=n(76),c=n(36),u=n(113),s=n(73),l=n(49),f=l("IE_PROTO"),p=function(){},h=function(t){return" + diff --git a/langs/en/be-vs-ae.html b/langs/en/be-vs-ae.html index 142bbb26..feddc7e9 100644 --- a/langs/en/be-vs-ae.html +++ b/langs/en/be-vs-ae.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# 英式和美式

单词/词组 BE AE
单程/往返 single/return trip one-way/round trip
地铁 underground/tube subway
地下通道 subway underpass
秋天 autumn fall

发音 BE AE
tomato /təˈmɑːtəʊ/ /təˈmeɪdoʊ/
Z zed /zɛd/ zee /ziː/
rock /rɒk/ /rɑːk/

In most English-speaking countries, including the United Kingdom, Canada, India, Ireland, New Zealand, Zambia and Australia, the letter's name is zed /zɛd/, ... but in American English its name is zee /ziː/

- Z - Wikipedia(opens new window)

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# 英式和美式

单词/词组 BE AE
单程/往返 single/return trip one-way/round trip
地铁 underground/tube subway
地下通道 subway underpass
秋天 autumn fall

发音 BE AE
tomato /təˈmɑːtəʊ/ /təˈmeɪdoʊ/
Z zed /zɛd/ zee /ziː/
rock /rɒk/ /rɑːk/

In most English-speaking countries, including the United Kingdom, Canada, India, Ireland, New Zealand, Zambia and Australia, the letter's name is zed /zɛd/, ... but in American English its name is zee /ziː/

- Z - Wikipedia(opens new window)

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/en/friends/_sidebar.html b/langs/en/friends/_sidebar.html index 97f11fd9..a7c5eace 100644 --- a/langs/en/friends/_sidebar.html +++ b/langs/en/friends/_sidebar.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)
Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)
Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/en/friends/s01e01.html b/langs/en/friends/s01e01.html index 1e20ed8c..440b4cb4 100644 --- a/langs/en/friends/s01e01.html +++ b/langs/en/friends/s01e01.html @@ -8,7 +8,7 @@ - + @@ -49,7 +49,7 @@ accentcouch - 沙发,a sofa


accentfigure

  • v. MAINLY US. to expect or think that something will happen
    [+(that)] We figured (that) you'd want to rest after your trip.

accentfixate

  • v. to think about something too much and find it difficult to stop
    High achievers sometimes fixate on their own flaws.

accenttake

  • v. (ACCEPT) to accept or have
    Do they take credit cards here?
    He continually abuses her, and she just sits there and takes it.

accentfreak

  • n. (STRANGE) a thing, person, animal, or event that is extremely unusual or unlikely, and not like any other of its type
  • v. to become or cause someone to become extremely emotional
    freak (sb) out

accenthit

  • v. (EFFECT) if an idea or thought hits you, you suddenly think of it
    That's when it hit me that my life would never be the same again.

accentchange

  • v. to remove one set of clothes and put a different set on yourself or a young child, especially a baby, or to remove dirty sheets from a bed and put clean ones on it
    You don't need to change - you look great as you are.

accenthead

  • v. to go in a particular direction
    I was heading out of the room when she called me back.
    We were heading towards Kumasi when our truck broke down.
    He headed straight for (= went towards) the fridge.

# Phrases

accentgo out

  • to leave a room or building, especially in order to do something for entertainment
  • to have a romantic and usually sexual relationship with someone
  • ...

go through sth

  • (EXPERIENCE) to experience a difficult or unpleasant situation
  • see S01E03
  • ...

accentfeel like (doing) sth

  • to have a wish for something, or to want to do something, at a particular moment
    I feel like (having) a nice cool glass of lemonade.
    -to want to do something that you do not do
    He was so rude I felt like slapping his face.

accentsteer clear of sb/sth

  • to avoid someone or something that seems unpleasant, dangerous, or likely to cause problems
    They warned their children to steer clear of drugs.

accentstay out of sth

  • to not become involved in an argument or discussion
    It's better to stay out of their arguments.

accentspell sth out

  • to explain something in a very clear way with details
    The government has so far refused to spell out its plans/policies.
Last updated: 11/23/2020, 3:23:58 PM
- +to want to do something that you do not do
He was so rude I felt like slapping his face.

accentsteer clear of sb/sth

  • to avoid someone or something that seems unpleasant, dangerous, or likely to cause problems
    They warned their children to steer clear of drugs.

accentstay out of sth

  • to not become involved in an argument or discussion
    It's better to stay out of their arguments.

accentspell sth out

  • to explain something in a very clear way with details
    The government has so far refused to spell out its plans/policies.
Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/en/friends/s01e02.html b/langs/en/friends/s01e02.html index 1d6518c2..a9120172 100644 --- a/langs/en/friends/s01e02.html +++ b/langs/en/friends/s01e02.html @@ -8,7 +8,7 @@ - + @@ -44,7 +44,7 @@ very great
The police car drove past at a terrific speed.

accentway

  • n. INFORMAL. (WANT) If someone gets or has their way, what they want happens
    If she doesn't get/have her (own) way, she sulks like a four-year-old.

accentwell

  • v. (of liquid) to appear on the surface of something or come slowly out from somewhere
    Dirty water welled (up) out of the damaged pipe.
    As she read the letter tears welled up in her eyes.

# Phrases

accentsit through sth

  • to stay until the end of an event such as a meeting or performance that is very long or boring
    We had to sit through two hours of speeches.

accentas far as sb is concerned

  • in a particular person's opinion(虽然学过,但是还没有熟练使用)
    As far as I'm concerned, feng shui doesn't work.

accentrun sth by sb

  • INFORMAL. to tell someone about something so that that person can give their opinion about it

accentput sth in(to) perspective


accentbring sth up

  • to start to talk about a particular subject
    She's always bringing up her health problems.

accenttake the heat off sb

  • INFORMAL. If someone or something takes the heat off you, he, she, or it reduces the amount of criticism you have to deal with
    he deputy's resignation over the scandal has taken some of the heat off his superior.

accentrun into sb

  • to meet someone you know when you are not expecting to

(accentrun into sth 还有其他意思)


accentsteer clear of 见 E01


accentroll with the punches

  • INFORMAL. to be able to deal with a series of difficult situations
    Coping with and withstanding adversity by being flexible (Urban Dictionary)
    见招拆招

accentwork out(不接宾语)

  • to happen or develop in a particular way
    Let's hope this new job works out well for him.
  • to exercise in order to improve the strength or appearance of your body
  • to be the result of a calculation
    These figures work out differently each time I add them.
    The safe load for a truck of this size works out at nearly 20 tons.

accentwork out sth

  • (DISCOVER) to discover an answer, develop an idea, or calculate an amount
    You can use a calculator to work out the solution.

# Others

Last updated: 11/23/2020, 3:23:58 PM
- +(US USUALLY lasagna)
Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/en/friends/s01e03.html b/langs/en/friends/s01e03.html index 7570cd6d..48beaa3d 100644 --- a/langs/en/friends/s01e03.html +++ b/langs/en/friends/s01e03.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# Friends S01 E03

# Words

  • accentleather - 皮革
  • accentwrist /rɪst/ - 手腕
  • accentflick - 轻拍;轻弹
  • accentodds - n. [plural] 几率
  • accentwhimper - 呜咽
  • accentyardstick - 准绳;(好坏或成败的)衡量标准;码尺
  • accentinnate - 与生俱来的;固有的
  • accentchew - 咀嚼
  • accentrow - v. 划(船)

accentwalk

  • v. [T] to go with someone to a particular place, for example because you want to protect them from danger, or show them the way:
    He offered to walk her home/to the station.

accentcushion

  • n. 靠垫;软垫
  • v. to make the effect or force of something softer;缓和冲击
    The soft grass cushioned his fall.

accentpuff

  • n. (SMOKING) an act of smoking
    She took a puff on her cigarette and thought for a moment.

accentherd

  • n.
    • a large group of animals of the same type that live and feed together 牧群;兽群
    • MAINLY DISAPPROVING. a large group of people that is considered together as a group and not separately 人群;芸芸众生

accentbash

  • v.
    • INFORMAL. to hit hard
    • [T] to criticize someone severely

accentdump

  • (PUT DOWN) to put down or drop something in a careless way
    He came in with four shopping bags and dumped them on the table.

accentput

  • v. (EXPRESS) to express something in words
    She wanted to tell him that she didn't want to see him any more, but she didn't know how to put it.
    Has everyone had a chance to put their point of view?

# Phrases

accentgo with sb/sth

  • INFORMAL. to accept an idea or agree with a person 同意;接受

go through sth

  • (EXAMINE) to examine something that contains a collection of things carefully in order to organize them or find something
    I'm going through my wardrobe and throwing out all the clothes I don't wear any more.
    Remember to go through the pockets before you put those trousers in the washing machine.
  • see S01E01
  • ...

accentput sth out

  • 关(灯),熄灭(火,烟头)
    Firefighters have been called to put out the fire in the city centre.

# Others

05:45 -- 06:04 虚拟语气

Phoebe: It's not mine, I didn't earn it, if I kept it, it would be like stealing.
Rachel: Yeah, but if you spent it, it would be like shopping!
Phoebe: Okay. Okay, let's say I bought a really great pair of shoes. Do you know what I'd hear, with every step I took?


accentnursery rhyme - 童谣;儿歌


accenta thing or two

  • some matters, facts, or information 一些事情;些许知识,一星半点
    Why don't you ask Andrew about it? He knows a thing or two about (= has some knowledge of) computers.

accenthave had it with someone/something

  • to not be willing to continue to deal with someone or something
    I’ve had it with this job – I’m quitting.

accent**(every) now and then**

ALSO (every) now and again

  • sometimes but not very often; from time to time 偶尔

accentdéjà vu 既视感

逮虾户(opens new window) 🚐💨

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# Friends S01 E03

# Words

  • accentleather - 皮革
  • accentwrist /rɪst/ - 手腕
  • accentflick - 轻拍;轻弹
  • accentodds - n. [plural] 几率
  • accentwhimper - 呜咽
  • accentyardstick - 准绳;(好坏或成败的)衡量标准;码尺
  • accentinnate - 与生俱来的;固有的
  • accentchew - 咀嚼
  • accentrow - v. 划(船)

accentwalk

  • v. [T] to go with someone to a particular place, for example because you want to protect them from danger, or show them the way:
    He offered to walk her home/to the station.

accentcushion

  • n. 靠垫;软垫
  • v. to make the effect or force of something softer;缓和冲击
    The soft grass cushioned his fall.

accentpuff

  • n. (SMOKING) an act of smoking
    She took a puff on her cigarette and thought for a moment.

accentherd

  • n.
    • a large group of animals of the same type that live and feed together 牧群;兽群
    • MAINLY DISAPPROVING. a large group of people that is considered together as a group and not separately 人群;芸芸众生

accentbash

  • v.
    • INFORMAL. to hit hard
    • [T] to criticize someone severely

accentdump

  • (PUT DOWN) to put down or drop something in a careless way
    He came in with four shopping bags and dumped them on the table.

accentput

  • v. (EXPRESS) to express something in words
    She wanted to tell him that she didn't want to see him any more, but she didn't know how to put it.
    Has everyone had a chance to put their point of view?

# Phrases

accentgo with sb/sth

  • INFORMAL. to accept an idea or agree with a person 同意;接受

go through sth

  • (EXAMINE) to examine something that contains a collection of things carefully in order to organize them or find something
    I'm going through my wardrobe and throwing out all the clothes I don't wear any more.
    Remember to go through the pockets before you put those trousers in the washing machine.
  • see S01E01
  • ...

accentput sth out

  • 关(灯),熄灭(火,烟头)
    Firefighters have been called to put out the fire in the city centre.

# Others

05:45 -- 06:04 虚拟语气

Phoebe: It's not mine, I didn't earn it, if I kept it, it would be like stealing.
Rachel: Yeah, but if you spent it, it would be like shopping!
Phoebe: Okay. Okay, let's say I bought a really great pair of shoes. Do you know what I'd hear, with every step I took?


accentnursery rhyme - 童谣;儿歌


accenta thing or two

  • some matters, facts, or information 一些事情;些许知识,一星半点
    Why don't you ask Andrew about it? He knows a thing or two about (= has some knowledge of) computers.

accenthave had it with someone/something

  • to not be willing to continue to deal with someone or something
    I’ve had it with this job – I’m quitting.

accent**(every) now and then**

ALSO (every) now and again

  • sometimes but not very often; from time to time 偶尔

accentdéjà vu 既视感

逮虾户(opens new window) 🚐💨

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/en/learned-in-uk.html b/langs/en/learned-in-uk.html index 3f5c503c..456d3b06 100644 --- a/langs/en/learned-in-uk.html +++ b/langs/en/learned-in-uk.html @@ -8,7 +8,7 @@ - + @@ -42,11 +42,11 @@ (另:https://forum.wordreference.com/threads/no-thanks-im-good.1539125/#post-7757200(opens new window)

― Do you have any questions?
― No, I'm good.

也可用作委婉拒绝。

― Do you wanna go to a strip club?
― I'm good.

https://www.zhihu.com/question/32071242/answer/57430203(opens new window)


You're good (to go) / You're all set

你的事情都办好了

眼见为实

good-to-go

all-set

all-set2

问法可以是 Am I all set?


till

  • prep./conj. 直到(utill 的非正式形式)
  • n. 收银台,(现金出纳机的)放钱的抽屉 (A cash register or drawer for money in a shop, bank, or restaurant)
  • v. 耕作,犁地

attraction

  • n. 吸引;吸引力;A place which draws visitors by providing something of interest or pleasure

quote

  • v./n. 引用;报价

travel insurance quotes


北约音标字母

打电话需要报字母的时候会用到(比如给银行打电话需要报名字,邮编等)

比如 B - Bravo
-注意 Z 的读音(听到过 Z - Zet)

说 26 个英文字母时用单词怎么表达? - 栗子的回答 - 知乎(opens new window)
北约音标字母 - 维基百科(opens new window)


serve

  • v. 服务;提供;发球
  • n. 发球
Last updated: 11/23/2020, 3:23:58 PM
Last updated: 11/23/2020, 5:05:54 PM
- + diff --git a/langs/en/misuses.html b/langs/en/misuses.html index 3fd3d9db..50c53c3e 100644 --- a/langs/en/misuses.html +++ b/langs/en/misuses.html @@ -8,7 +8,7 @@ - + @@ -45,7 +45,7 @@ (在英国的实际体会:hello 还是很常听到的,包括朋友见面,并且语气也很热情;所谓太正式应该是美国人视角😂)

  • I want

有点命令的意味;同样的还有把 please 用在句首的时候
可以用 can I have

  • black

一般是指黑人
晒黑可以用 get tanned/darker

# TODO

https://www.bilibili.com/video/av25637075
-https://www.bilibili.com/video/av27550050

# 部分来源 {docsify-ignore}

  • bilibili @KatAndSid
  • bilibili @阿滴英文
Last updated: 11/23/2020, 3:23:58 PM
- +https://www.bilibili.com/video/av27550050

# 部分来源 {docsify-ignore}

  • bilibili @KatAndSid
  • bilibili @阿滴英文
Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/en/others.html b/langs/en/others.html index 21c0af1c..d6ebbc85 100644 --- a/langs/en/others.html +++ b/langs/en/others.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# 其他总结

accentbe worth doing


accentover time

if something happens over time, it happens gradually during a long period


accentfrom time to time

sometimes, but not regularly or very often

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# 其他总结

accentbe worth doing


accentover time

if something happens over time, it happens gradually during a long period


accentfrom time to time

sometimes, but not regularly or very often

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/index.html b/langs/index.html index d2e13086..1ad2f5e5 100644 --- a/langs/index.html +++ b/langs/index.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# Language Study

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# Language Study

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/langs/jp/beginner-unit-1-3.html b/langs/jp/beginner-unit-1-3.html index 4afc47aa..61b5bc44 100644 --- a/langs/jp/beginner-unit-1-3.html +++ b/langs/jp/beginner-unit-1-3.html @@ -8,7 +8,7 @@ - + @@ -38,7 +38,7 @@ 安心 不安 簡単 有名 親切 暇 元気 ハンサム おしゃれ
  • 接名词时要加
  • 做谓语    (
  • 过去式    (
  • 否定式    (
  • 过去否定式  (

# 副词

  • 后面须接否定形式(

# 助词

  • (表示存在的场所,~在~)
    (表示存在的场所,~有~)

    (表示移动行为的目的地)
    (表示移动行为的目的)

    (表示时间)
    (表示动作的对象)

  • (在某处发生某事用



  • (相当于「也」)
    (表示全面否定)
    (🤔

# 动词

# 疑问代词

疑问代词读一调

# 文型

  • (第二个~可以是名词 / 形容词 / 形容动词)
  • (存在)
  • (从~到~,可以是时间或者地点)
  • (~比~更 形容词 / 形容动词)
    (与~相比~更)
  • (~不如~,形容词否定形式)
    (⸺,形容动词否定形式)
  • (~中~最 形容词 / 形容动词)
Last updated: 11/23/2020, 3:23:58 PM
Last updated: 11/23/2020, 5:05:54 PM
- + diff --git a/langs/jp/beginner-unit-4-6.html b/langs/jp/beginner-unit-4-6.html index d9d340ee..98d84981 100644 --- a/langs/jp/beginner-unit-4-6.html +++ b/langs/jp/beginner-unit-4-6.html @@ -8,7 +8,7 @@ - + @@ -36,7 +36,7 @@ 形容动词形,加

# 助词

  • (表示移动行为的目的,目的动词要去掉
  • (表示人或物体的附着点,不能用
  • (表示该期间结束之前)
  • (经过 / 离开某场所)
  • (转折)
  • (铺垫,多用于书面语;口语用
  • (愿望,想要)
  • (新信息做主语?)
  • (「房间里有人吗?」)
    (「房间里有谁?」)
    (疑问词 + ,表示某时 / 某地 / 某人等,类似于 somewhere / someone)
  • (「都」,肯定形式)
    (「都」,否定形式)
  • (对自己说出的想法没有足够把握时,大部分时候类似于「吧」)

# 动词

# 动词

TIP

「学校语法」中称为五段动词,可在书本开头查看对应关系

一类动词,去掉之后最后一个音位于段的绝大部分动词
二类动词,去掉之后最后一个音位于段,以及位于段的一小部分动词
三类动词,,以及使用 的动词
-(比如前接汉字词或外来词,

……

  • (正在进行时,〔动词形〕+
  • (表示动作的结果状态,〔动词形〕+

    (否定回答)

    (特例)

# 动词

形〕的

# 自动词 / 他动词

# 动词

# 动词基本形

# 敬体形与简体形

动词 敬体形 简体形
现在将来形式,肯定     (基本形)
现在将来形式,否定   (形)
过去形式,肯定    (形)
过去形式,否定 形)

* 的简体形是

形容词(做谓语) 敬体形 简体形
现在将来形式,肯定   (去掉即可)
现在将来形式,否定
过去形式,肯定
过去形式,否定
形容动词(做谓语) 敬体形 简体形
现在将来形式,肯定
现在将来形式,否定
过去形式,肯定
过去形式,否定
名词(做谓语) 敬体形 简体形
现在将来形式,肯定
现在将来形式,否定
过去形式,肯定
过去形式,否定

# 文型

  • (数量词用在动词之前)
  • (时间数量 + 动词,小李每天工作 7 小时)
  • (一周两次,常省略为
  • (动作相继发生,〔动词形〕+ 动词)
    (差别为不能在一个句子中多次使用)

  • (〔动词形〕+ ,命令或要求某人做某事,虽然翻译为「请」,但是并不表示敬意)
    (——否定形式,〔动词形〕+ +
  • (表示许可,〔动词形〕+ +
  • (表示不做某事也行,〔动词形〕 +
  • (表示禁止,〔动词形〕+ +

  • (形容词 / 形容动词并列使用,用形,形容词和形容动词可以连接使用)

    (名词并列使用,用连接)
  • (想(做)~,〔动词去掉〕+
  • (动词否定形式加上疑问句,表示提议)
  • ,表示提议(一起做某事),语气偏随意)
  • (——,此外还可表示提议自己为对方做某事)
  • (表示变化,形容词 +
    (因主语的意志而产生变化,+
  • (表示变化,形容动词 / 名词 + +

    (因主语的意志而产生变化,+ +
  • (某种性质更好,〔形容词〕+ +
    (——,〔形容动词〕+ + +
  • (某种行为更好,〔动词形〕+ +
    (不~也好,〔动词形〕+ +
  • (——,〔名词〕+ + +
  • (必须,〔动词〕+

    (——,主要用于口语,〔动词形〕 + (可省略))

  • (表示能力,〔动词基本形〕+ +
    (也可以表示允许 / 可能)
  • (〔动词基本形〕+ = 形式名词)
  • (一个动作在另一个动作之前发生,〔动词基本形〕+ ~)
    (——,〔名词〕+ + ~)
  • (一个动作在另一个动作之后发生,〔动词形〕+ 、~)
    (——,〔名词〕+ + 、~)

  • (表示过去的经历,「~过」,通常用于至少半年以前的事情)


  • 连接两个句子,表示转折,用于口语;书面语用
    (或者表示铺垫)

  • (列举若干种动作,〔动词形〕

    (列举多种状况,〔形容词过去简体形

    (——,〔形容动词——〕
    (——,〔名词——〕,——)
    (更多例子)

  • (「根据……(而不同)/ 因……而异」)

  • (也可以以另一种形式用于句尾)

(疑问句做从句)


  • (不包含疑问词的疑问句(相当于英语的一般疑问句))

    (动词 / 形容词变为〔简体形〕然后加上

    (也可以使用〔基本形〕加〔形〕表示相同的含义)
  • (——)

    (形容动词 / 名词直接加,中间不加
    小句的主语后面必须用
  • (有疑问词的小句,aka 特殊疑问句)
    (使用〔简体形〕加,形容动词 / 名词同上,不加

  • (「(我)觉得 / 想~」,~小句用〔简体形〕,只能表示说话人自己的思考内容)

    (「~觉得 / 想~」,若是则也可以表示其他人的思考内容)
  • (转述别人的话,
    (指出话是对谁说的,

  • (〔简体形〕,说明状况或解释原因,两者分别用于口语和书面语)


  • (——,但是名词和形容动词(的现在将来形的肯定形)的要换成
  • (询问理由,省略的用法为
  • ,相当于「关于~」)
Last updated: 11/23/2020, 3:23:58 PM
Last updated: 11/23/2020, 5:05:54 PM
- + diff --git a/langs/jp/beginner-unit-7-9.html b/langs/jp/beginner-unit-7-9.html index f763feb2..249add27 100644 --- a/langs/jp/beginner-unit-7-9.html +++ b/langs/jp/beginner-unit-7-9.html @@ -8,7 +8,7 @@ - + @@ -32,11 +32,11 @@ Others GitHub - (opens new window)

# 标准日本语 初级(下)7-9 单元总结

#

Last updated: 11/23/2020, 3:23:58 PM
- + diff --git a/math/info-theory.html b/math/info-theory.html index 4fc79f9e..9d0603c2 100644 --- a/math/info-theory.html +++ b/math/info-theory.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# 信息论概念总结

TODO

https://zxth93.github.io/2017/09/27/KL%E6%95%A3%E5%BA%A6JS%E6%95%A3%E5%BA%A6Wasserstein%E8%B7%9D%E7%A6%BB/index.html

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# 信息论概念总结

TODO

https://zxth93.github.io/2017/09/27/KL%E6%95%A3%E5%BA%A6JS%E6%95%A3%E5%BA%A6Wasserstein%E8%B7%9D%E7%A6%BB/index.html

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/math/linear-algebra.html b/math/linear-algebra.html index 58d374f8..52964510 100644 --- a/math/linear-algebra.html +++ b/math/linear-algebra.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)
Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)
Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/math/probability.html b/math/probability.html index 76f4d15e..6c3084b0 100644 --- a/math/probability.html +++ b/math/probability.html @@ -8,7 +8,7 @@ - + @@ -34,7 +34,7 @@ GitHub (opens new window)

# 概率论

# 频率学派与贝叶斯学派

假定参数 θ\theta 决定分布 DD,分布 DD 产生样本集 X\mathcal{X}

  • 频率派把需要推断的参数 θ\theta 看做是固定的未知常数,即概率虽然是未知的,但最起码是确定的一个值,同时,样本 X\mathcal{X} 是随机的,所以频率派重点研究样本空间,大部分的概率计算都是针对样本 X\mathcal{X} 的分布;
  • 贝叶斯派的观点则截然相反,他们认为参数 θ\theta 是随机变量,而样本 X\mathcal{X} 是固定的,由于样本是固定的,所以他们重点研究的是参数的分布1

所以,在贝叶斯学派的观点下,Pr(θ)\Pr(\theta)先验Pr(Xθ)\Pr(\mathcal{X}|\theta)似然(不准确,似然函数不是概率),Pr(θX)\Pr(\theta|\mathcal{X})后验Pr(X)\Pr(\mathcal{X})证据(evidence)


# 各种分布

伯努利分布(0-1 分布)--- 扔一次硬币
二项分布 --- 扔多次硬币
-超几何分布

多项分布 --- 扔多次骰子


# 统计测试

Fisher's exact test TODO

# 参考文献 {docsify-ignore}

  1. 从贝叶斯方法谈到贝叶斯网络(opens new window)
Last updated: 11/23/2020, 3:23:58 PM
- +超几何分布

多项分布 --- 扔多次骰子


# 统计测试

Fisher's exact test TODO

# 参考文献 {docsify-ignore}

  1. 从贝叶斯方法谈到贝叶斯网络(opens new window)
Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/math/stats.html b/math/stats.html index 8360ad9b..8ac0673a 100644 --- a/math/stats.html +++ b/math/stats.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# 统计

# 随机模拟

https://cosx.org/2013/01/lda-math-mcmc-and-gibbs-sampling


TODO 随机化算法,如 Gibbs sampling;确定性算法(deterministic algorithm),如 EM 算法?

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# 统计

# 随机模拟

https://cosx.org/2013/01/lda-math-mcmc-and-gibbs-sampling


TODO 随机化算法,如 Gibbs sampling;确定性算法(deterministic algorithm),如 EM 算法?

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/ml/grad-descent-algos.html b/ml/grad-descent-algos.html index 56600a3c..78e6f55a 100644 --- a/ml/grad-descent-algos.html +++ b/ml/grad-descent-algos.html @@ -8,7 +8,7 @@ - + @@ -55,7 +55,7 @@ c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1 s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26 c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z -M1001 80h400000v40h-400000z">ηgt,i

GtG_t

Adadelta

RMSprop

Adam

(AdaMax, Nadam, AMSGrad)


# 阅读材料

总览:

Momentum/NAG:

  • https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
Last updated: 11/23/2020, 3:23:58 PM
Last updated: 11/23/2020, 5:05:54 PM
- + diff --git a/ml/graphical-model.html b/ml/graphical-model.html index 0a294376..1258f277 100644 --- a/ml/graphical-model.html +++ b/ml/graphical-model.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# 概率图模型

辛普森悖论,对撞因子(opens new window)

https://www.guokr.com/article/6222/

# 阅读材料

https://ermongroup.github.io/cs228-notes/

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# 概率图模型

辛普森悖论,对撞因子(opens new window)

https://www.guokr.com/article/6222/

# 阅读材料

https://ermongroup.github.io/cs228-notes/

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/ml/index.html b/ml/index.html index 65f396b6..e48153f4 100644 --- a/ml/index.html +++ b/ml/index.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

# Machine Learning

Last updated: 11/23/2020, 3:23:58 PM
- + (opens new window)

# Machine Learning

Last updated: 11/23/2020, 5:05:54 PM
+ diff --git a/ml/learning-theory.html b/ml/learning-theory.html index eefeae4d..6bd10237 100644 --- a/ml/learning-theory.html +++ b/ml/learning-theory.html @@ -8,7 +8,7 @@ - + @@ -37,11 +37,11 @@ 也被称为 concept,c ⁣:XYc\colon\mathcal{X}\to\mathcal{Y}cCc\in\mathcal{C} (concept class)
  • 样例集 D={(x(1),y(1)),(x(2),y(2)),,(x(m),y(m))}D=\lbrace(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\rbrace:先从 D\mathcal{D} 中采样 x(i)x^{(i)},然后由 ff 标记得到 y(i)y^{(i)},独立地多次采样得到样例集 DD,这就是独立同分布假设(i.i.d. assumption)
  • 学习器的输出,假设函数 h ⁣:XYh\colon\mathcal{X}\to\mathcal{Y},所有可能的 hh 的集合叫做假设空间 H\mathcal{H}(比如所有形如 h=ax+bh=ax+b 的函数),H\mathcal{H}inductive bias(opens new window) 决定(即对某类 hh 的偏好)
  • 损失函数(loss function), ⁣:Y×YR\ell\colon\mathcal{Y}\times\mathcal{Y}\to\mathbb{R},学习理论主要研究二分类问题,常使用 0-1 loss,即 =1h(x)y\ell=1_{h(x) \neq y},其中 11 为指示函数
  • 得到一个 hh 后,我们如何评估它的好坏

    • 泛化误差,在样本分布 D\mathcal{D} 之下 loss 的期望

      E(h;D)=ExD[(h(x),y)].E(h;\mathcal{D}) = \mathbb{E}_{x\sim\mathcal{D}}\thinspace[\ell(h(x),y)].

    • 经验误差,在样例集上的平均 loss

      E^(h;D)=1mi=1m(h(x(i)),y(i)).\widehat{E}(h;D)=\frac{1}{m}\sum_{i=1}^m \ell\mathopen{}\left(h(x^{(i)}), y^{(i)}\right)\mathclose{}.

    # PAC 学习框架

    # VC 维

    # 阅读材料

    • Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar. Foundations of Machine Learning. The MIT Press. 2012. (Chapter 2, 3)
    • 周志华. 机器学习.(第 12 章,计算学习理论)
    • Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge University Press. 2014. (Chapter 2, 3)
    • Stanford CS229T/STATS231: Statistical Learning Theory(opens new window)
    Last updated: 11/23/2020, 3:23:58 PM
    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/ml/pca.html b/ml/pca.html index e92345de..9a0a267e 100644 --- a/ml/pca.html +++ b/ml/pca.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # PCA

    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)

    # PCA

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/ml/pytorch.html b/ml/pytorch.html index a9178a65..434097ff 100644 --- a/ml/pytorch.html +++ b/ml/pytorch.html @@ -8,7 +8,7 @@ - + @@ -37,7 +37,7 @@ preds = model(inputs) ## Forward pass loss = loss_func(preds, labels) ## Compute loss loss.backward() ## Backward pass -optimizer.step() ## Update model weights

    # NaN problems

    只需一句

    torch.autograd.set_detect_anomaly(True)

    PyTorch 会自动检查是否出现 NaN 值,并且打印出详细的信息(会影响性能,所以仅在排查问题时使用)

    Last updated: 11/23/2020, 3:23:58 PM
    - +optimizer.step() ## Update model weights

    # NaN problems

    只需一句

    torch.autograd.set_detect_anomaly(True)

    PyTorch 会自动检查是否出现 NaN 值,并且打印出详细的信息(会影响性能,所以仅在排查问题时使用)

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/ml/reinforcement-learning.html b/ml/reinforcement-learning.html index e5fa56ab..9c57933b 100644 --- a/ml/reinforcement-learning.html +++ b/ml/reinforcement-learning.html @@ -8,7 +8,7 @@ - + @@ -34,11 +34,11 @@ GitHub (opens new window)

    # 强化学习 (Reinforcement Learning)

    WARNING

    UNDER CONSTRUCTION

    1 🥥 In a Nutshell

    设想你正在下一局(你)不知道规则的棋,下了几十(上百)步之后,裁判突然宣布「你输了」
    ——(如何下得更好)这就是强化学习

    TODO

    强化学习的特点:不知道规则->?,几十上百步->?

    强化学习是通过与环境交互来解决连续决策的问题,而监督学习可以看作是单轮决策(预测)问题

    • 可能的状态 statesSs \in S(棋盘的局面)
    • 允许的动作 actionaA(s)a \in A(s)(即可以落子的位置)
    • A (probabilistic) transition modelP(s;s,a) ⁣:S×A×S[0,1]P(s^\prime;s, a) \colon S \times A \times S \to [0,1](比如黑白棋的翻转,围棋的提子)
    • 效用函数 utility functionu(s,p)u(s,p),即玩家 pp 在游戏结束时(状态 ss)获得的「收益」

    # 马尔可夫决策过程 (Markov Decision Processes, aka MDPs)

    TODO

    # 从 Model-based 到 Model-free

    # 阅读材料

    • Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall. 3rd 2009.
      -(Chapter 17: Making Complex Decisions; Chapter 21: Reinforcement Learning)
    • 周志华. 机器学习. 2016 年第 1 版.(第 16 章,强化学习)

    其它

    Last updated: 11/23/2020, 3:23:58 PM
    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/ml/rule-learning.html b/ml/rule-learning.html index 9310a86e..f53775a4 100644 --- a/ml/rule-learning.html +++ b/ml/rule-learning.html @@ -8,7 +8,7 @@ - + @@ -36,7 +36,7 @@
    • accentHorn clause,是文字 (literal) 的析取 (disjunction),并且最多只有一个肯定文字
      • A Horn clause with exactly one positive literal is a definite clause
      • A Horn clause without a positive literal is called a goal clause
      • 注意 Horn clauses 的合取是合取范式
  • accent句子,accentsentence,没有自由变量的公式🤔
  • accenttheory,一组句子🤔
  • A set of Horn clauses is called a logic program [1]
    • Boolean logic
    • accent合取范式,accentconjunctive normal form (CNF) or accentclausal normal form,是若干个子句 (clause) 的合取 (conjunction),其中子句为文字 (literal) 的析取,也即 AND of ORs
      • 所有文字的合取当然是 CNF 的,每个文字都看作一个子句
      • 所有文字的析取也是 CNF 的(注意:同时也是 DNF 的),看作只有一个子句(🤔这种情况很反直觉,至于为什么会定义这种标准形式,说是在自动定理证明中有用)
    • accent析取范式,accentdisjunctive normal form (DNF),即 OR of ANDs
    • 演绎deduction,从一般到特殊,从一般性规律出发来探讨具体事物
    • 归纳induction,从特殊到一般,从个别事物出发概括出一般性规律
    • accent归结,accentresolution

    # 规则学习

    # 命题规则学习

    • 序贯覆盖
    • 剪枝优化

    # 一阶规则学习

    FOIL (First-Order Inductive Learner)

    序贯覆盖,自顶向下(从一般到特殊)

    本质只是把命题规则学习的过程稍加改变使其能应用在一阶规则上

    # 归纳逻辑程序设计

    ILP (Inductive Logic Programming)

    自底向上

    # 最小一般泛化

    LGG (Least General Generalization),从名字就能看出来,给定若干规则,希望总结成一条相对泛化的规则,但同时又不要太过泛化(最小泛化),可以用最大公约数来类比

    • 对于两条规则(🤔应该需要写成合取的形式)
      • 先找都有的谓词,然后对其中相同位置的常量进行考察,若相同则保留,若不相同则替换为变量(泛化)
      • 对于不是都含有的谓词,直接忽略,否则 LGG 就不能特化成该规则

    🤔RLGG

    # 递归结

    inverse resolution,四种方式,在一阶规则里要用到 置换 和 合一 两种操作

    # 阅读材料

    1. Stephen Muggleton. Inductive Logic Programming. New Generation Computing. 1991. (PDF(opens new window) )
      -最有用的是附录 A,正文不是很懂,只看到有很多种 operations
    2. 周志华. 机器学习. 2016 年第 1 版.(第 15 章,规则学习)
    Last updated: 11/23/2020, 3:23:58 PM
    - +最有用的是附录 A,正文不是很懂,只看到有很多种 operations
  • 周志华. 机器学习. 2016 年第 1 版.(第 15 章,规则学习)
  • Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/ml/svm.html b/ml/svm.html index 2e5684b0..8e7e8b85 100644 --- a/ml/svm.html +++ b/ml/svm.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)
    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)
    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/others/causal-reasoning.html b/others/causal-reasoning.html index a40ce93a..b7638f12 100644 --- a/others/causal-reasoning.html +++ b/others/causal-reasoning.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)
    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)
    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/others/characters.html b/others/characters.html index 95816c71..bf16cc7c 100644 --- a/others/characters.html +++ b/others/characters.html @@ -8,7 +8,7 @@ - + @@ -34,11 +34,11 @@ GitHub (opens new window)

    # 常用特殊字符

    # 标点

    # Emoji 和符号

    😂 🠖 ·

    # Box-drawing Characters

    For quick copy

    ┌─────┐
     │     │
    -└─────┘
    Last updated: 11/23/2020, 3:23:58 PM
    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/others/dynamic-programming.html b/others/dynamic-programming.html index b97018a1..b2ef7a2b 100644 --- a/others/dynamic-programming.html +++ b/others/dynamic-programming.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # 动态规划

    https://leetcode-cn.com/problems/predict-the-winner

    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)

    # 动态规划

    https://leetcode-cn.com/problems/predict-the-winner

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/others/genetics.html b/others/genetics.html index 34e5c52e..515ee91a 100644 --- a/others/genetics.html +++ b/others/genetics.html @@ -8,7 +8,7 @@ - + @@ -34,7 +34,7 @@ GitHub (opens new window)

    # 遗传学知识回顾

    INFO

    主要参考维基百科

    # 基本概念

    • 染色体,由一个长链 DNA 分子和被称为组蛋白 (histone) 的蛋白质构成
    • DNA,脱氧核糖核酸,由核苷酸构成的双链分子
    • 基因具有遗传效应(编码蛋白质)的 DNA 或 RNA 片段,每个 DNA 分子包含许多个基因
    • 基因包含编码区非编码区,启动子位于非编码区
    • 编码区又分为外显子内含子,内含子又是非编码序列(有待考证
    • 基因组genome,指包含在该生物的 DNA(部分病毒是 RNA)中的全部遗传信息,即其完整的 DNA 序列,包括基因和非编码 DNA

    • 顺式作用原件cis-regulatory element,位于基因的旁侧,是可以调控其旁侧基因表达的非编码 DNA 序列,包括启动子 (promoter)、增强子、应答元件等;
      • 通过与转录因子 (transcription factor) 结合来调控基因;
      • cis 表示 "on this side",即和被调控的基因在同一个 DNA 分子上
      • 增强子enhancer,increase the likelihood that transcription of a particular gene will occur
    • 反式作用原件trans-regulatory element,是可以调控别的基因表达的基因
      • 更具体一点,就是编码转录因子的基因
    • cis-regulatory 有时也叫 cis-acting,cis-regulation;trans-regulatory 同样

    • in vivo,in the living,在活体内(进行于活体内的实验)
    • in vitro,in the glass,在玻璃里(进行于试管内 / 活体外的实验)
    • ChIP-seq,chromatin immunoprecipitation (ChIP) + massively parallel DNA sequencing TODO

    中心法则:DNA 制造 RNA,RNA 制造蛋白质,蛋白质反过来协助前两项流程,并协助 DNA 自我复制

    • DNA → RNA,转录
    • RNA → 蛋白质,翻译
    • DNA → DNA,DNA 复制
    Central dogma of molecular biology
    Central dogma of molecular biology (from Wiki)

    # 转录 (Transcription)

    Transcription (from Wiki)
    • 转录因子transcription factor,是指能够结合在某基因上游特异核苷酸序列(如启动子,增强子)上的蛋白质,这些蛋白质能调控该基因的转录
    • 真核生物的 RNA 可以进一步被处理,可能包括聚腺苷酸化端帽剪接

    详见 Wiki(opens new window)

    # 可变剪接 (Alternative Splicing)

    During the process of pre-mRNA → mature mRNA
    -Particular exons of a gene may be included or excluded under particular conditions (e.g. in particular tissues)

    There are numerous modes of alternative splicing observed, of which the most common is exon skipping

    DNA alternative splicing (from Wiki)

    详见 Wiki(opens new window)

    Last updated: 11/23/2020, 3:23:58 PM
    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/others/index.html b/others/index.html index 4f79d67f..4918552b 100644 --- a/others/index.html +++ b/others/index.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # Others

    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)

    # Others

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/others/minimax.html b/others/minimax.html index bfa31e27..b2e5903b 100644 --- a/others/minimax.html +++ b/others/minimax.html @@ -8,7 +8,7 @@ - + @@ -169,11 +169,11 @@ v__1 = min_value(0, l - 2, nums[l - 1]) return max(v_0, v__1) >= sum(nums) / 2

    执行用时: 44~48 ms (74%~54%)
    内存消耗: 14 MB

    好了很多,但是还是不够。其它细节比如:数组长度为偶数时玩家一必胜。另外还有动态规划视角的解法(TODO)。

    # 阅读材料

    • Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall. 3rd 2009.
      -(Chapter 5: Adversarial Search)

    扩展阅读

    Last updated: 11/23/2020, 3:23:58 PM
    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/others/p-np.html b/others/p-np.html index 8f8537f3..5657b98e 100644 --- a/others/p-np.html +++ b/others/p-np.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # P、NP 与 NPC 问题

    # 时间复杂度

    算法的时间复杂度描述的是执行一个算法所需要的时间相对于问题规模(输入规模)的函数关系。如下列出一些常见时间复杂度(更详细的表格见此处(opens new window)

    名称 复杂度 算法举例
    常数时间 O(1)O(1) 判断一个二进制数的奇偶
    线性时间 O(n)O(n) 找出 nn 个数中的最大值
    线性对数时间 O(nlogn)O(n\log n) 快速排序
    二次时间 O(n2)O(n^2) 冒泡排序

    TODO 0.01n^3 与 100n^2 比较

    P 问题

    NP 问题

    NPC 问题

    p np npc
    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. (source: Wiki)

    # 阅读材料

    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)

    # P、NP 与 NPC 问题

    # 时间复杂度

    算法的时间复杂度描述的是执行一个算法所需要的时间相对于问题规模(输入规模)的函数关系。如下列出一些常见时间复杂度(更详细的表格见此处(opens new window)

    名称 复杂度 算法举例
    常数时间 O(1)O(1) 判断一个二进制数的奇偶
    线性时间 O(n)O(n) 找出 nn 个数中的最大值
    线性对数时间 O(nlogn)O(n\log n) 快速排序
    二次时间 O(n2)O(n^2) 冒泡排序

    TODO 0.01n^3 与 100n^2 比较

    P 问题

    NP 问题

    NPC 问题

    p np npc
    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. (source: Wiki)

    # 阅读材料

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/others/workout.html b/others/workout.html index 67da3ff5..00a31c2b 100644 --- a/others/workout.html +++ b/others/workout.html @@ -8,7 +8,7 @@ - + @@ -33,7 +33,7 @@ GitHub (opens new window)

    # 健身知识

    给训练入门者一个诚心诚意的忠告:

    放弃大多数小肌群训练,从今天起,每天做一次大肌群训练(胸、背、臀、腿)6~10 组,搭配核心肌群训练(腹部、下背部)1~3 组,最后做 HIIT(高强度间歇训练)15 到 30 分钟。不到半年,你就会惊喜地看到自己的改变。到那时,你一开始担心的小问题,可能也就随风而逝了。
    -  健康、塑形、减脂、撑衣……一切从大肌群训练开始。抓大放小,才是增肌或减脂运动入门时的王道。

    ⸺《硬派健身》

    # 肌肉酸痛

    https://zhuanlan.zhihu.com/p/19889322(opens new window)

    Last updated: 11/23/2020, 3:23:58 PM
    - +  健康、塑形、减脂、撑衣……一切从大肌群训练开始。抓大放小,才是增肌或减脂运动入门时的王道。

    ⸺《硬派健身》

    # 肌肉酸痛

    https://zhuanlan.zhihu.com/p/19889322(opens new window)

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/programming/index.html b/programming/index.html index b74fcd6b..5eb112fd 100644 --- a/programming/index.html +++ b/programming/index.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # Programming

    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)

    # Programming

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/programming/latex.html b/programming/latex.html index 857e4974..c3cedf73 100644 --- a/programming/latex.html +++ b/programming/latex.html @@ -8,7 +8,7 @@ - + @@ -174,11 +174,11 @@ \setbeamertemplate{footline}[page number]{} % Gets rid of navigation symbols -\setbeamertemplate{navigation symbols}{}
    Last updated: 11/23/2020, 3:23:58 PM
    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/programming/python/cuda.html b/programming/python/cuda.html index 8c02ad42..c52addc0 100644 --- a/programming/python/cuda.html +++ b/programming/python/cuda.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # 加速计算基础──CUDA Python 编程

    💡 某程序员遇到了一个问题,打算用并行来解决它──现他在有个两问题了。

    本文大部分内容来自 NVIDIA Deep Learning Institute

    # Numba 简介

    Numba 是一个支持类型特化即时 函数编译器,用于为 CPU 或 GPU 加速以数字计算为主的 Python 函数。此定义很长,下面就让我们逐一解析这些术语:

    • 函数编译器:Numba 用于编译 Python 函数,而非整个应用程序,亦不定义函数。Numba 不会取代 Python 解释器,而仅作为另一个 Python 模块,将普通函数转化为执行速度更快的函数(通常情况下)。
    • 类型特化:Numba 可为您当前使用的特定数据类型生成专门的执行代码,从而加速函数运行。Python 函数专为处理通用数据类型而设计,这为其带来了极大的灵活性,但也严重拖慢了运行速度。实际上,您只需调用具有少量参数类型的函数,即可让 Numba 为每个类型组生成快速执行代码。
    • 即时:Numba 在函数首次被调用时即会开始编译函数。确保编译器了解您将使用的参数类型。此特性还支持在 Jupyter Notebook 中以交互方式使用 Numba,正如使用传统应用程序一样简单。
    • 以数字计算为主:Numba 目前以处理基本数据类型为主,如 intfloatcomplex。字符串处理支持极为受限,且许多字符串处理函数还无法在 GPU 上获得有效加速。若要借助 Numba 获得最佳加速效果,您可能需要搭配使用 NumPy 数组。

    CUDA 编程方式包括

    • CUDA C/C++(最高效、灵活)
    • PyCUDA(完全对接 CUDA C/C++,性能次佳,不过需编写 C 代码,通常还要修改 Python 代码)
    • Numba(Python 最友好,也能为 CPU 加速)

    @jit @njit 加速 CPU(实时编译成机器码)

    @vectorize(GPU 并行,ufunc)

    Best Practice

    尽量减少 CPU (Host) 和 GPU (Device) 间的数据传输,即便中途遇到在 GPU 上并不比在 CPU 上运行快的函数,也需遵照此规则

    CUDA Best Practices Guide(opens new window)

    @cuda.jit

    cuda.to_device copy_to_host()

    # 自定义 CUDA 核函数

    # 线程结构

    • Thread,GPU 工作的最小单元
    • Block,由多个 thread 组成,拥有共享内存
    • Grid,由多个 block 组成,是 GPU 上的函数(即核函数)执行的单元
    Grid of thread blocks
    Thread hierarchy. source

    cuda.gird

    cuda.gridsize

    练习:使用网格跨度 (stride) 处理超大数据集

    # 原子操作

    cuda.atomic.*

    # CUDA 多维网格与共享内存

    练习:矩阵转置与矩阵乘法

    ……

    # 😎

    cuda certificate
    Last updated: 11/23/2020, 3:23:58 PM
    - + diff --git a/programming/python/matplotlib.html b/programming/python/matplotlib.html index afecf2b0..135f020e 100644 --- a/programming/python/matplotlib.html +++ b/programming/python/matplotlib.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # Matplotlib

    TIP

    https://github.com/matplotlib/cheatsheets

    # 配置 Configuration

    配置文件

    import matplotlib
    +    (opens new window)      

    # Matplotlib

    # 配置 Configuration

    配置文件

    import matplotlib
     print(matplotlib.matplotlib_fname())
     ## e.g. C:\Users\<username>\Miniconda3\lib\site-packages\matplotlib\mpl-data\matplotlibrc

    可以用来设置默认字体
    (新安装的字体可能会找不到,删掉 $HOME\.matplotlib\fontlist-*.json 缓存文件即可)

    在程序中也可以进行配置,比如

    plt.rc("text", usetex=True)
    @@ -61,7 +61,7 @@
     
     ## 如果是坐标轴的话
     # plt.gca().yaxis.set_major_locator(MaxNLocator(integer=True))

    # 使 colorbar 和作图内容的高度相符

    im = plt.imshow()  ## ...
    -plt.colorbar(im, fraction=0.046, pad=0.4)

    不知道原理但是很神奇(更多讨论(opens new window)

    Last updated: 11/23/2020, 3:23:58 PM

    不知道原理但是很神奇(更多讨论(opens new window)

    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/programming/python/miniconda.html b/programming/python/miniconda.html index eba1f49a..1ef115c2 100644 --- a/programming/python/miniconda.html +++ b/programming/python/miniconda.html @@ -8,7 +8,7 @@ - + @@ -40,11 +40,11 @@ conda env list conda activate <env_name> conda env remove -n <env_name> -

    https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html(opens new window)

    Last updated: 11/23/2020, 3:23:58 PM

    https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html(opens new window)

    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/programming/python/mpi4py.html b/programming/python/mpi4py.html index 2f6db5e1..42a70798 100644 --- a/programming/python/mpi4py.html +++ b/programming/python/mpi4py.html @@ -8,7 +8,7 @@ - + @@ -54,7 +54,7 @@ # or `mpirun -np 1 python script0.py : -np 1 python script1.py`

    Output

    Sent.
     Received.
     {'a': 7, 'b': 3.14}
    -

    # 阅读材料

    Last updated: 11/23/2020, 3:23:58 PM
    - +

    # 阅读材料

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/programming/python/mpl-scientific-style.html b/programming/python/mpl-scientific-style.html index 780076fb..787b18fd 100644 --- a/programming/python/mpl-scientific-style.html +++ b/programming/python/mpl-scientific-style.html @@ -8,7 +8,7 @@ - + @@ -51,7 +51,7 @@ # ax.xaxis.set_major_formatter(FormatStrFormatter('%d')) ax.xaxis.set_minor_locator(MultipleLocator(5)) -plt.show()
    Last updated: 11/23/2020, 3:23:58 PM
    - +plt.show()
    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/programming/python/python.html b/programming/python/python.html index fa51df0b..2de3f1e4 100644 --- a/programming/python/python.html +++ b/programming/python/python.html @@ -8,7 +8,7 @@ - + @@ -32,8 +32,8 @@ Others GitHub - (opens new window)

    # Python

    # 作用域 scope

    • Python 程序由代码块组成,包括模块(mudule),类(class),函数(def)等
      -if,for 等语句不构成代码块
    • 当变量在代码块中被定义时,作用域为该代码块(局部变量)

    # 变量名解析 LEGB 法则

    print(__name__)        ## Builtin
    +    (opens new window)      

    # Python

    # 作用域 (scope)

    • Python 程序由代码块组成,包括模块 (mudule),类 (class),函数 (def) 等
      +注意 if,for 等语句不构成代码块
    • 当变量在代码块中被定义时,作用域为该代码块(局部变量)

    # 变量名解析 LEGB 法则

    print(__name__)        ## Builtin
     
     global_var = 1         ## Global
     
    @@ -64,7 +64,7 @@
     f"{b:05}"             ## "000.5"
     f"{b:.3f}"            ## "0.500"
     f"{b:.3e}"            ## "5.000e-01"
    -f"{b:.2%}"            ## "50.00%"

    PyFormat (intuitive examples)(opens new window)
    Python strftime reference(opens new window)
    PEP 3101 -- Standard Format Specifiers(opens new window)

    Last updated: 11/23/2020, 3:23:58 PM

    PyFormat (intuitive examples)(opens new window)
    Python strftime reference(opens new window)
    PEP 3101 -- Standard Format Specifiers(opens new window)

    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/programming/python/user-snippets.html b/programming/python/user-snippets.html index 580dec2a..3243db6b 100644 --- a/programming/python/user-snippets.html +++ b/programming/python/user-snippets.html @@ -8,7 +8,7 @@ - + @@ -49,7 +49,7 @@ messagebox.showinfo("Title", "Message") root.destroy()

    # 打包成 exe

    pyinstaller --onefile --noconsole main.py
    -

    # 附:更改图标

    用 Resource Hacker 打开要改图标的 exe,Action > Replace Icon ...,然后选择一个有图标的 exe 替换(比如 pythonw.exe

    Last updated: 11/23/2020, 3:23:58 PM

    # 附:更改图标

    用 Resource Hacker 打开要改图标的 exe,Action > Replace Icon ...,然后选择一个有图标的 exe 替换(比如 pythonw.exe

    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/reading/200-years-of-surgery.html b/reading/200-years-of-surgery.html index 4dbc6db0..7bf0b4bf 100644 --- a/reading/200-years-of-surgery.html +++ b/reading/200-years-of-surgery.html @@ -8,7 +8,7 @@ - + @@ -33,7 +33,7 @@ GitHub (opens new window)

    # 手术两百年

    https://www.youtube.com/playlist?list=PLwXMmy5fUrVy1d4RBHQbG1nJFQ_HheAGi

    # 理性之光


    # 手术基石

    手术三大基石:止血,麻醉,消毒

    帕雷,钳夹止血法(针线缝合血管),「外科学之父」

    死亡率 300% 的手术(opens new window)

    1846 年,莫顿(opens new window) ,乙醚麻醉剂,历史第一次公开的无痛手术


    # 长驱直入

    X 射线,医疗影像

    输血(血型,血液保存)

    1983 年,腹腔镜手术,微创手术的开端


    # 攻入颅腔

    哈维・库欣,神经外科之父

    重要工具:CT(X 射线计算机断层成像),NMRI(核磁共振成像)

    显微外科手术

    帕金森


    # 打开心脏

    低温手段

    1954 年,李拉海,交叉循环

    1958 年,人工心肺机

    介入治疗,导管顺着静脉到达心脏(1929 年,沃纳・福斯曼(opens new window)

    人工心脏(等待心脏移植的过渡)


    # 生死「器」约

    器官移植,血管连接,三点吻合法

    排异,环孢素

    1954 年,第一例成功的肾移植手术,同卵双胞胎

    来源:遗体捐献,干细胞培养


    # 重病之王

    癌症


    # 手术未来

    干细胞与组织工程学

    计算机辅助

    微创

    基因

    人工智能 😂

    覆盖贫困地区

    Last updated: 11/23/2020, 3:23:58 PM
    - +
  • (之后)对疾病的认识

  • # 手术基石

    手术三大基石:止血,麻醉,消毒

    帕雷,钳夹止血法(针线缝合血管),「外科学之父」

    死亡率 300% 的手术(opens new window)

    1846 年,莫顿(opens new window) ,乙醚麻醉剂,历史第一次公开的无痛手术


    # 长驱直入

    X 射线,医疗影像

    输血(血型,血液保存)

    1983 年,腹腔镜手术,微创手术的开端


    # 攻入颅腔

    哈维・库欣,神经外科之父

    重要工具:CT(X 射线计算机断层成像),NMRI(核磁共振成像)

    显微外科手术

    帕金森


    # 打开心脏

    低温手段

    1954 年,李拉海,交叉循环

    1958 年,人工心肺机

    介入治疗,导管顺着静脉到达心脏(1929 年,沃纳・福斯曼(opens new window)

    人工心脏(等待心脏移植的过渡)


    # 生死「器」约

    器官移植,血管连接,三点吻合法

    排异,环孢素

    1954 年,第一例成功的肾移植手术,同卵双胞胎

    来源:遗体捐献,干细胞培养


    # 重病之王

    癌症


    # 手术未来

    干细胞与组织工程学

    计算机辅助

    微创

    基因

    人工智能 😂

    覆盖贫困地区

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/software/index.html b/software/index.html index 48c3c7b4..738fb383 100644 --- a/software/index.html +++ b/software/index.html @@ -8,7 +8,7 @@ - + @@ -32,7 +32,7 @@ Others GitHub - (opens new window)

    # Software and Tools

    Last updated: 11/23/2020, 3:23:58 PM
    - + (opens new window)

    # Software and Tools

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/software/powershell.html b/software/powershell.html index be8136ee..8eef1af0 100644 --- a/software/powershell.html +++ b/software/powershell.html @@ -8,7 +8,7 @@ - + @@ -42,7 +42,7 @@ ) jupyter notebook stop $port -}

    然后把这个加到用户 profile 就可以了(在 PS 里输入 $profile 查看路径,一般是 %userprofile%\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

    为了允许 .ps1 文件执行,需要以管理员权限打开 PS 然后执行

    Set-ExecutionPolicy RemoteSigned

    https://superuser.com/a/516704/950027(opens new window)
    https://stackoverflow.com/a/4038991(opens new window)


    # Unable to Eject Drive

    Get-EventLog -LogName System -after (Get-Date).AddHours(-1) | Where-Object {$_.EventID -eq 225} | Sort-Object TimeGenerated | Format-Table -Wrap

    https://superuser.com/a/1356217/950027(opens new window)

    Last updated: 11/23/2020, 3:23:58 PM
    - +}

    然后把这个加到用户 profile 就可以了(在 PS 里输入 $profile 查看路径,一般是 %userprofile%\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

    为了允许 .ps1 文件执行,需要以管理员权限打开 PS 然后执行

    Set-ExecutionPolicy RemoteSigned

    https://superuser.com/a/516704/950027(opens new window)
    https://stackoverflow.com/a/4038991(opens new window)


    # Unable to Eject Drive

    Get-EventLog -LogName System -after (Get-Date).AddHours(-1) | Where-Object {$_.EventID -eq 225} | Sort-Object TimeGenerated | Format-Table -Wrap

    https://superuser.com/a/1356217/950027(opens new window)

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/software/shell.html b/software/shell.html index a09aee85..26ee5d2b 100644 --- a/software/shell.html +++ b/software/shell.html @@ -8,7 +8,7 @@ - + @@ -64,7 +64,7 @@ ## Usage scp $rdsdir/path/to/foo . -

    http://www.compciv.org/topics/bash/variables-and-substitution/

    Last updated: 11/23/2020, 3:23:58 PM
    - +

    http://www.compciv.org/topics/bash/variables-and-substitution/

    Last updated: 11/23/2020, 5:05:54 PM
    + diff --git a/software/vim.html b/software/vim.html index c2c7cf73..a9146fb8 100644 --- a/software/vim.html +++ b/software/vim.html @@ -8,7 +8,7 @@ - + @@ -32,11 +32,11 @@ Others GitHub - (opens new window)

    # Vim

    TIP

    Just for simple editing (otherwise use VSCode instead!)

    Press . to repeat last change,给多行加 / 去注释的时候很实用


    # Moving cursor

    Key Operation
    gg go to start of file
    G go to end of file
    Ctrl+f/d next page/half page
    Ctrl+b/u previous page/half page
    w next word (dw delete current word)
    b previous word
    f{char} jump to next {char} (on this line)

    ; repeat last f (or F/t/T) operation

    # Copy and paste

    Key Operation
    yy copy the line (mnemonic: yank)
    dd delete the line (behaves like a cut operation)
    p paste after the current line
    P paste before the current line
    dt{char} delete up to this {char} (excluding) on this line

    yj copy 2 lines, y2k copy 3 lines (which includes 2 lines above)
    df{char} ~ (including)

    # Replace/Overtype

    Key Operation
    r replace current char (in-place)
    cw replace current word (delete current word and enter insert mode)
    R enter replace mode

    x delete current char

    Key Operation
    / enter search mode, type your search string, press Enter to confirm or ESC to cancel
    n/N go to next/previous occurrence (similar to F3/Shift+F3 in most IDEs)

    Type :noh to turn off highlighting until the next search

    Last updated: 11/23/2020, 3:23:58 PM
    - + diff --git a/software/windows/autohotkey.html b/software/windows/autohotkey.html index 1b180cc2..3d404f14 100644 --- a/software/windows/autohotkey.html +++ b/software/windows/autohotkey.html @@ -8,7 +8,7 @@ - + @@ -58,11 +58,11 @@ ; [^1]: 可以用附带的 Window Spy 程序查看各个窗口的 WindowClass 值 ; [^2]: https://www.autohotkey.com/docs/commands/PostMessage.htm#ExSwitchKeybLang ; [^3]: https://github.com/larionov/ahk-multiple-language-switcher/ -

    fill-form

    Last updated: 11/23/2020, 3:23:58 PM

    fill-form

    Last updated: 11/23/2020, 5:05:54 PM
    - + diff --git a/software/windows/context-menu.html b/software/windows/context-menu.html index a3f2e1f4..8c5ddb5c 100644 --- a/software/windows/context-menu.html +++ b/software/windows/context-menu.html @@ -8,7 +8,7 @@ - + @@ -43,7 +43,7 @@ HKEY_CLASSES_ROOT\Directory\shell\ HKEY_CLASSES_ROOT\AllFilesystemObjects\shell\

    仅对当前用户

    HKEY_CURRENT_USER\SOFTWARE\Classes\directory\background\shell\
    -
    Last updated: 11/23/2020, 3:23:58 PM
    - +
    Last updated: 11/23/2020, 5:05:54 PM
    +