-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathchainer_model.py
288 lines (236 loc) · 8.92 KB
/
chainer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import json
import os
import time
import numpy as np
import chainer
from chainer import (functions as F,
links as L,
ChainList, Variable)
from chainer.training import extension, extensions
from logger import get_logger
from utils import (batch_generator, encode_text, generate_seed, ID2CHAR, main,
make_dirs, sample_from_probs, VOCAB_SIZE)
logger = get_logger(__name__)
class Network(ChainList):
"""
build character embeddings LSTM neural network.
"""
def __init__(self, vocab_size=VOCAB_SIZE, embedding_size=32,
rnn_size=128, num_layers=2, drop_rate=0.0):
super(Network, self).__init__()
self.args = {"vocab_size": vocab_size, "embedding_size": embedding_size,
"rnn_size": rnn_size, "num_layers": num_layers,
"drop_rate": drop_rate}
self.encoder = L.EmbedID(vocab_size, embedding_size)
self.rnn_layers = [L.LSTM(embedding_size, rnn_size)]
self.rnn_layers.extend(L.LSTM(rnn_size, rnn_size) for _ in range(num_layers-1))
self.decoder = L.Linear(rnn_size, vocab_size)
self.add_link(self.encoder)
for link in self.rnn_layers:
self.add_link(link)
self.add_link(self.decoder)
def __call__(self, inputs):
# input shape: [batch_size]
embed_seq = F.dropout(self.encoder(inputs), self.args["drop_rate"])
# shape: [batch_size, embedding_size]
rnn_out = embed_seq
for link in self.rnn_layers:
rnn_out = F.dropout(link(rnn_out), self.args["drop_rate"])
# shape: [batch_size, rnn_size]
logits = self.decoder(rnn_out)
# shape: [batch_size, vocab_size]
return logits
def reset_state(self):
"""
resets rnn states.
"""
for link in self.rnn_layers:
link.reset_state()
def get_state(self):
"""
get rnn states.
"""
return [(link.c, link.h) for link in self.rnn_layers]
def set_state(self, state):
"""
set rnn states
"""
for link, (c, h) in zip(self.rnn_layers, state):
link.set_state(c, h)
def load_model(checkpoint_path):
"""
loads model from checkpoint_path.
"""
with open("{}.json".format(checkpoint_path)) as f:
model_args = json.load(f)
net = Network(**model_args)
model = L.Classifier(net)
chainer.serializers.load_npz(checkpoint_path, model)
logger.info("model loaded: %s.", checkpoint_path)
return model
class DataIterator(chainer.dataset.Iterator):
"""
data iterator for chainer.
"""
def __init__(self, text, batch_size=64, seq_len=64):
self.data_iterator = batch_generator(encode_text(text).astype(np.int32),
batch_size, seq_len)
self.num_batches = (len(text) - 1) // (batch_size * seq_len)
self.iteration = 0
self.epoch = 0
self.is_new_epoch = True
def __next__(self):
self.iteration += 1
self.is_new_epoch = self.iteration % self.num_batches == 0
if self.is_new_epoch:
self.epoch += 1
return next(self.data_iterator)
@property
def epoch_detail(self):
return self.iteration / self.num_batches
def serialize(self, serializer):
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)
class BpttUpdater(chainer.training.StandardUpdater):
"""
updater for backpropagation through time.
"""
def update_core(self):
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')
x, y = next(train_iter)
seq_len = x.shape[1]
loss = 0
for i in range(seq_len):
loss += optimizer.target(chainer.Variable(x[:, i]), chainer.Variable(y[:, i]))
optimizer.target.cleargrads() # clear gradients
loss.backward() # calculate gradient
loss.unchain_backward() # truncate
optimizer.update() # apply gradient update
def generate_text(model, seed, length=512, top_n=10):
"""
generates text of specified length from trained model
with given seed character sequence.
"""
logger.info("generating %s characters from top %s choices.", length, top_n)
logger.info('generating with seed: "%s".', seed)
generated = seed
encoded = encode_text(seed).astype(np.int32)
model.predictor.reset_state()
with chainer.using_config("train", False), chainer.no_backprop_mode():
for idx in encoded[:-1]:
x = Variable(np.array([idx]))
# input shape: [1]
# set internal states
model.predictor(x)
next_index = encoded[-1]
for i in range(length):
x = Variable(np.array([next_index], dtype=np.int32))
# input shape: [1]
probs = F.softmax(model.predictor(x))
# output shape: [1, vocab_size]
next_index = sample_from_probs(probs.data.squeeze(), top_n)
# append to sequence
generated += ID2CHAR[next_index]
logger.info("generated text: \n%s\n", generated)
return generated
class LoggerExtension(extension.Extension):
"""
chainer Extension for logging.
generates text at the end of each epoch.
"""
trigger = (1, "epoch")
priority = -200
def __init__(self, text):
self.text = text
self.time_epoch = time.time()
def __call__(self, trainer):
duration_epoch = time.time() - self.time_epoch
epoch = trainer.updater.epoch
loss = trainer.observation["main/loss"].data
logger.info("epoch: %s, duration: %ds, loss: %.6g.",
epoch, duration_epoch, loss)
# get rnn state
model = trainer.updater.get_optimizer("main").target
state = model.predictor.get_state()
# generate text
seed = generate_seed(self.text)
generate_text(model, seed)
# set rnn back to training state
model.predictor.set_state(state)
# reset time
self.time_epoch = time.time()
def initialize(self, _):
self.time_epoch = time.time()
def train_main(args):
"""
trains model specfied in args.
main method for train subcommand.
"""
# load text
with open(args.text_path) as f:
text = f.read()
logger.info("corpus length: %s.", len(text))
# data iterator
data_iter = DataIterator(text, args.batch_size, args.seq_len)
# load or build model
if args.restore:
logger.info("restoring model.")
load_path = args.checkpoint_path if args.restore is True else args.restore
model = load_model(load_path)
else:
net = Network(vocab_size=VOCAB_SIZE,
embedding_size=args.embedding_size,
rnn_size=args.rnn_size,
num_layers=args.num_layers,
drop_rate=args.drop_rate)
model = L.Classifier(net)
# make checkpoint directory
log_dir = make_dirs(args.checkpoint_path)
with open("{}.json".format(args.checkpoint_path), "w") as f:
json.dump(model.predictor.args, f, indent=2)
chainer.serializers.save_npz(args.checkpoint_path, model)
logger.info("model saved: %s.", args.checkpoint_path)
# optimizer
optimizer = chainer.optimizers.Adam(alpha=args.learning_rate)
optimizer.setup(model)
# clip gradient norm
optimizer.add_hook(chainer.optimizer.GradientClipping(args.clip_norm))
# trainer
updater = BpttUpdater(data_iter, optimizer)
trainer = chainer.training.Trainer(updater, (args.num_epochs, 'epoch'), out=log_dir)
trainer.extend(extensions.snapshot_object(model, filename=os.path.basename(args.checkpoint_path)))
trainer.extend(extensions.ProgressBar(update_interval=1))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PlotReport(y_keys=["main/loss"]))
trainer.extend(LoggerExtension(text))
# training start
model.predictor.reset_state()
logger.info("start of training.")
time_train = time.time()
trainer.run()
# training end
duration_train = time.time() - time_train
logger.info("end of training, duration: %ds.", duration_train)
# generate text
seed = generate_seed(text)
generate_text(model, seed, 1024, 3)
return model
def generate_main(args):
"""
generates text from trained model specified in args.
main method for generate subcommand.
"""
# load model
inference_model = load_model(args.checkpoint_path)
# create seed if not specified
if args.seed is None:
with open(args.text_path) as f:
text = f.read()
seed = generate_seed(text)
logger.info("seed sequence generated from %s.", args.text_path)
else:
seed = args.seed
return generate_text(inference_model, seed, args.length, args.top_n)
if __name__ == "__main__":
main("Chainer", train_main, generate_main)