-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
569 lines (460 loc) · 18.6 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
"""Helper functions for Shin Rakuda."""
import json
import logging
import os
import re
from collections import defaultdict
from math import pi
from random import choices, sample
from typing import Optional, Dict, List
import anthropic
import google.generativeai as genai
import matplotlib.pyplot as plt
import numpy as np
import openai
from anthropic import AsyncAnthropic
from dotenv import load_dotenv
from jinja2 import Template
from openai import AsyncOpenAI
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_random_exponential,
)
from transformers import pipeline, AutoTokenizer
from vllm import SamplingParams, LLM
from rakuda.constants import (
DEFAULT_BOOTSTRAP_ITERATIONS,
DEFAULT_PERCENTILES,
DEFAULT_FIG_WIDTH,
DEFAULT_BASE_FONT_SIZE,
DEFAULT_BAR_CHART_WIDTH,
DEFAULT_BAR_CHART_HEIGHT
)
# Load the .env file and export all the keys as environment variables
load_dotenv()
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logging.getLogger("httpx").setLevel(logging.WARNING)
def write_jsonl(file_path: str, data: List[Dict]):
"""
Write a list of dictionaries to a JSON Lines file.
Args:
file_path (str): The path to the output file.
data (List[Dict]): The list of dictionaries to be written.
Returns:
None
"""
with open(file_path, "w", encoding="utf-8") as f:
for item in data:
f.write(json.dumps(item, ensure_ascii=False) + "\n")
def read_jsonl(file_path: str) -> List[Dict]:
"""
Read a JSONL file and return a list of dictionaries.
Args:
file_path (str): The path to the JSONL file.
Returns:
List[Dict]: A list of dictionaries, where each dictionary represents a JSON object from the file.
"""
with open(file_path, "r", encoding="utf-8") as f:
try:
return [json.loads(line) for line in f]
except json.JSONDecodeError as e:
logging.error("Error decoding JSON: %s", e)
return []
def parse_float(string: str) -> float:
"""Clean up string using regex and convert to float."""
string = re.sub(r"[^\d.]", "", string)
try:
return float(string)
except ValueError:
return 0.0
def bootstrap_percentiles(
scores, score_function, percentiles=None, n_bootstrap=DEFAULT_BOOTSTRAP_ITERATIONS
):
"""Calculate the bootstrap percentiles."""
if percentiles is None:
percentiles = DEFAULT_PERCENTILES
try:
bootstrap_scores = []
for _ in range(n_bootstrap):
indices = choices(np.arange(len(scores)), k=len(scores))
bs_scores = [scores[idx] for idx in indices]
bootstrap_scores.append(score_function(bs_scores))
return np.percentile(bootstrap_scores, percentiles)
except Exception as e:
logging.error("Error in bootstrap percentiles calculation: %s", e)
raise
def format_chat_template(chat_template):
"""Format the chat template."""
return chat_template.replace(" ", "").replace("\n", "")
def parse_score_from_llm_response(llm_response: str, match_keyword: str) -> int:
"""Parse the score from the LLM response."""
match = re.search(rf"{match_keyword}", llm_response)
if match:
score = match.group(1)
# print(f"Extracted score: {score}")
return int(score)
else:
score = re.findall(r"(\d+)", llm_response)
if score:
return int(score[0])
return 0
def process_dataset_model_pair(dataset, model, config, result_dir, operation):
"""Check if the result file already exists and return the path."""
result_path = os.path.join(
result_dir,
f"{dataset['dataset_name']}++{model['model_name']}{operation}.jsonl",
)
existing_eval_dir = config.get("existing_eval_dir", None)
if existing_eval_dir and os.path.exists(result_path):
print(f"{result_path} already exists.")
return result_path, True # Indicate that the file already exists
return result_path, False
def create_judge_prompt(
query,
judge_prompt: str,
messages: list,
use_jinja: bool = False,
) -> str:
"""Create a judge prompt with .format()"""
if use_jinja:
template = Template(judge_prompt)
return template.render(messages=messages, query=query)
else:
question_count, answer_count = 1, 1
for _, message in enumerate(messages):
if message["role"] != "system":
if message["role"] == "user":
key = f"question{question_count}"
question_count += 1
elif message["role"] == "assistant":
key = f"answer{answer_count}"
answer_count += 1
# Add the item content to the dictionary
query[key] = message["content"]
return judge_prompt.format(**query)
def init_local_model(model_info, inference_library: str) -> pipeline:
"""Initialize the local model."""
print(f"\n*** Initializing local model {model_info['model_name']} ***\n")
try:
if inference_library == "vllm":
pipe = LLM(**model_info["vllm_config"])
elif inference_library in ["hf", "huggingface"]:
pipe = pipeline(**model_info["hf_pipeline"])
else:
raise ValueError(f"Inference library '{inference_library}' is not supported.")
return pipe
except Exception as e:
logging.error("Failed to initialize local model: %s", e)
raise
def generate_local_model_prompt(
local_pipeline,
model_info,
chat_prompts,
inference_library: str,
return_text: bool = False,
):
"""Generate prompt for local models."""
# chat_prompts should be a list of dictionaries with role and content keys
if isinstance(chat_prompts, str):
chat_prompts = [{"role": "user", "content": chat_prompts}]
system_prompt = model_info.get("system_prompt", None)
system_prompt_included = False
for chat in chat_prompts:
if chat["role"] == "system":
system_prompt_included = True
break
if not system_prompt_included and system_prompt:
chat_prompts.insert(0, {"role": "system", "content": system_prompt})
chat_template = model_info["hf_chat_template"].get("chat_template", None)
if inference_library in ["hf", "huggingface"]:
"""Generate prompt for local models."""
tokenizer = local_pipeline.tokenizer
if chat_template:
chat_template = format_chat_template(chat_template)
else:
chat_template = tokenizer.default_chat_template
# update chat template option
chat_template_options = model_info["hf_chat_template"]
chat_template_options["chat_template"] = chat_template
if return_text: # override the tokenize value if return_text is True
chat_template_options["tokenize"] = False
chat_prompts = tokenizer.apply_chat_template(
chat_prompts,
**chat_template_options,
)
elif inference_library == "vllm":
if not chat_template:
chat_template = """
{{ system_prompt }}
{% for message in conversation %}
{{ 'USER:' if message.role == 'user' else 'ASSISTANT:' }} {{ message.content }}
{% endfor %}
"""
elif chat_template.lower() == "chatml":
tokenizer = AutoTokenizer.from_pretrained(
model_info["vllm_config"]["model"]
)
chat_template = tokenizer.default_chat_template
chat_template = format_chat_template(chat_template)
template = Template(chat_template)
bos_token = model_info.get("bos_token", "")
eos_token = model_info.get("eos_token", "")
chat_prompts = template.render(
messages=chat_prompts,
system_prompt=system_prompt,
bos_token=bos_token,
eos_token=eos_token,
)
print("*** Local model prompt: ", chat_prompts)
return chat_prompts
def generate_full_prompt(
local_pipeline,
model_info,
chat_prompts,
inference_library,
return_text: bool = False,
):
"""Generate a full prompt for the model for review purpose"""
if isinstance(chat_prompts, str):
chat_prompts = [{"role": "user", "content": f"{chat_prompts}"}]
provider = model_info["provider"].strip().lower()
# generate a full prompt text for review purpose
if not local_pipeline: # generate prompt for api models
if provider == "openai":
return chat_prompts
elif provider == "google":
chat_prompt_text = " ".join([x["content"] for x in chat_prompts])
return chat_prompt_text
elif provider == "anthropic":
return chat_prompts
else:
chat_prompt_text = generate_local_model_prompt(
local_pipeline, model_info, chat_prompts, inference_library, return_text
)
return chat_prompt_text
@retry(
retry=retry_if_exception_type(
(
openai.APIConnectionError,
openai.RateLimitError,
openai.APIError,
anthropic.RateLimitError,
anthropic.APIError,
anthropic.APIConnectionError,
)
),
wait=wait_random_exponential(multiplier=1, min=1, max=100),
stop=stop_after_attempt(5),
)
async def generate_llm_response(
model,
config: Dict,
local_model_pipeline: Optional[pipeline],
chat_prompts: list | str,
) -> str:
"""Get the response from the LLM."""
# if the chat prompt is a string, convert it to a list, mostly for judge prompt
inference_library = config.get("inference_library", "hf")
if isinstance(chat_prompts, str):
chat_prompts = [{"role": "user", "content": f"{chat_prompts}"}]
try:
provider = model["provider"].strip().lower()
if provider == "openai":
openai_client = AsyncOpenAI()
llm_response = await openai_client.chat.completions.create(
model=model["model_name"], messages=chat_prompts
)
response = llm_response.choices[0].message.content
elif provider == "google":
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GOOGLE_API_KEY)
google_client = genai.GenerativeModel("gemini-pro")
chat_prompt_text = " ".join([x["content"] for x in chat_prompts])
response = google_client.generate_content(chat_prompt_text)
response = response.text
elif provider == "anthropic":
anthropic_client = AsyncAnthropic()
message = await anthropic_client.messages.create(
model=model["model_name"], messages=chat_prompts, max_tokens=1024
)
response = message.content
elif provider == "huggingface":
if inference_library == "vllm":
return_text = True
else:
return_text = False # TODO: need to check if this is necessary for HF
chat_prompt_text = generate_local_model_prompt(
local_model_pipeline, model, chat_prompts, inference_library, return_text
)
if inference_library in ["hf", "huggingface"]:
do_sample_option = model.get("do_sample", True)
outputs = local_model_pipeline(
chat_prompt_text,
do_sample=do_sample_option,
pad_token_id=local_model_pipeline.tokenizer.eos_token_id,
)
response = outputs[0]["generated_text"]
elif inference_library == "vllm":
sampling_params = SamplingParams(
**model["vllm_sampling_params"]
)
output = local_model_pipeline.generate(chat_prompt_text, sampling_params)
response = output[0].outputs[0].text
else:
raise ValueError(f"Inference library '{inference_library}' is not supported.")
else:
raise ValueError(f"Model provider '{model['provider']}' is not supported.")
except KeyError:
logging.error("Missing 'provider' key in model configuration")
raise
except Exception as e:
logging.error("Error generating LLM response: %s", e)
raise
response = str(response).strip()
print(f"Response: {response}")
return response
def load_datasets_jsonl(
random_questions: Optional[bool],
num_questions: int,
dataset_path: str,
column: Optional[str],
) -> list:
"""Load the dataset from the given path."""
queries = []
try:
queries = read_jsonl(dataset_path)
except FileNotFoundError:
logging.error("Dataset file not found: %s", dataset_path)
return []
# due to datasets format, we need to load the turns differently
# No changes needed for datasets like "japanese-mt-bench" with "turns" key
if column:
queries = [{**query, "turns": [query[column]]} for query in queries]
# if random_questions is None, as key is not in config, then no shuffle
if random_questions is not None:
if num_questions > 0 and random_questions:
queries = sample(queries, num_questions)
elif num_questions > 0 and not random_questions:
queries = queries[:num_questions]
else:
if num_questions > 0:
queries = queries[:num_questions]
return queries
def save_datasets_jsonl(dataset_path: str, queries: list, dataset_name: str):
"""Save the dataset to the given path."""
dataset_path = os.path.join(dataset_path, f"{dataset_name}.jsonl")
write_jsonl(dataset_path, queries)
def generate_radar_chart(
scores: list, model_name: str, dataset_name: str, judge_model: dict, result_dir: str
):
"""Generate a graph from the given scores."""
try:
fig_width = DEFAULT_FIG_WIDTH # Example figure width in inches
base_font_size = DEFAULT_BASE_FONT_SIZE # Base font size for a figure of default size (6x6 inches)
title_font_size = base_font_size + (fig_width - 6)
subtitle_font_size = base_font_size + (fig_width - 6) * 0.5
categories = set(score["category"] for score in scores)
num_categories = len(categories)
# Calculate the mean scores for each category
mean_scores = {}
for category in categories:
category_scores = [
score["score"] for score in scores if score["category"] == category
]
mean_scores[category] = sum(category_scores) / len(category_scores)
# if there are multiple categories, create spider web graph
labels, values = zip(*mean_scores.items())
values = list(values)
labels = list(labels)
if num_categories > 1:
angles = [n / float(num_categories) * 2 * pi for n in range(num_categories)]
angles += angles[:1]
values += values[:1] # Complete the loop
# Set up the figure and polar subplot
fig, ax = plt.subplots(
figsize=(num_categories, num_categories), subplot_kw=dict(polar=True)
)
# Draw one axe per variable and add labels
plt.xticks(angles[:-1], labels)
# Plot data and fill with color
ax.plot(angles, values, linewidth=1, linestyle="solid")
ax.fill(angles, values, "b", alpha=0.25)
# Add a title and a grid
plt.title(f"{dataset_name} - {model_name}", size=title_font_size)
plt.suptitle(
f"Judge: {judge_model['model_name']}", size=subtitle_font_size, y=0.05
)
ax.grid(True)
# Save the plot
file_path = (
f"{result_dir}/radar_chart_{dataset_name}_{model_name}_{judge_model}.png"
)
plt.savefig(file_path, bbox_inches="tight")
return file_path
except Exception as e:
logging.error("Failed to generate radar chart: %s", e)
return None
def generate_vertical_bar_chart(dataset_scores: list, dataset: str, result_dir: str):
"""Generate a vertical bar chart from the given scores."""
try:
# Extract the model names and scores from the dataset scores
scores = [score["score"] for score in dataset_scores]
# dataset_scores = json.load(dataset_scores)
models = [score["model"] for score in dataset_scores]
# Plotting
fig, ax = plt.subplots(
figsize=(DEFAULT_BAR_CHART_WIDTH, DEFAULT_BAR_CHART_HEIGHT)
)
# Create the vertical bar chart
bars = ax.bar(models, scores, color="grey") # Default color is grey
# Highlight a specific bar (e.g., the model ELYZA-7B) in blue
# Add the score labels above each bar
for bar in bars:
height = bar.get_height()
ax.annotate(
"{}".format(height),
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha="center",
va="bottom",
)
# Add titles and labels
ax.set_title(f"Model Benchmark for Dataset: {dataset}")
ax.set_ylabel("Score")
ax.set_xlabel("Model")
# Rotate the model names for better readability
plt.xticks(rotation=45)
# Save the plot to disk
file_path_vertical = f"{result_dir}/vertical_bar_chart_{dataset}.png"
plt.savefig(file_path_vertical, bbox_inches="tight", format="png")
# Return the path of the saved file
return file_path_vertical
except Exception as e:
logging.error("Failed to generate vertical bar chart: %s", e)
return None
def generate_models_bar_chat(all_scores: list, result_dir: str):
"""Generate one bar chart for each dataset with all the models."""
scores_by_dataset = defaultdict(list)
for score in all_scores:
# Use dictionary comprehension to exclude the 'dataset' key
reduced_score = {k: v for k, v in score.items() if k != "dataset"}
scores_by_dataset[score["dataset"]["dataset_name"]].append(reduced_score)
# # Convert defaultdict to a regular dict if necessary
scores_by_dataset = dict(scores_by_dataset)
# To get a list of lists of the reduced objects
datasets = list(scores_by_dataset.keys())
chart_results = []
for dataset in datasets:
chart_results.append(
generate_vertical_bar_chart(
dataset_scores=scores_by_dataset[dataset],
dataset=dataset,
result_dir=result_dir,
)
)
return chart_results