forked from mpezeshki/pytorch_forward_forward
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
114 lines (92 loc) · 3.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.optim import Adam
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, ToTensor, Normalize, Lambda
from torch.utils.data import DataLoader
def MNIST_loaders(train_batch_size=50000, test_batch_size=10000):
transform = Compose([
ToTensor(),
Normalize((0.1307,), (0.3081,)),
Lambda(lambda x: torch.flatten(x))])
train_loader = DataLoader(
MNIST('./data/', train=True,
download=True,
transform=transform),
batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(
MNIST('./data/', train=False,
download=True,
transform=transform),
batch_size=test_batch_size, shuffle=False)
return train_loader, test_loader
def overlay_y_on_x(x, y):
x_ = x.clone()
x_[:, :10] *= 0.0
x_[range(x.shape[0]), y] = x.max()
return x_
class Net(torch.nn.Module):
def __init__(self, dims):
super().__init__()
self.layers = []
for d in range(len(dims) - 1):
self.layers += [Layer(dims[d], dims[d + 1]).cuda()]
def predict(self, x):
goodness_per_label = []
for label in range(10):
h = overlay_y_on_x(x, label)
goodness = []
for layer in self.layers:
h = layer(h)
goodness += [h.pow(2).mean(1)]
goodness_per_label += [sum(goodness).unsqueeze(1)]
goodness_per_label = torch.cat(goodness_per_label, 1)
return goodness_per_label.argmax(1)
def train(self, x_pos, x_neg):
h_pos, h_neg = x_pos, x_neg
for i, layer in enumerate(self.layers):
print('training layer', i, '...')
h_pos, h_neg = layer.train(h_pos, h_neg)
class Layer(nn.Linear):
def __init__(self, in_features, out_features,
bias=True, device=None, dtype=None):
super().__init__(in_features, out_features, bias, device, dtype)
self.relu = torch.nn.ReLU()
self.opt = Adam(self.parameters(), lr=0.03)
self.threshold = 2.0
self.num_epochs = 1000
def forward(self, x):
x_direction = x / (x.norm(2, 1, keepdim=True) + 1e-4)
return self.relu(
torch.mm(x_direction, self.weight.T) +
self.bias.unsqueeze(0))
def train(self, x_pos, x_neg):
for i in tqdm(range(self.num_epochs)):
g_pos = self.forward(x_pos).pow(2).mean(1)
g_neg = self.forward(x_neg).pow(2).mean(1)
# The following loss pushes pos (neg) samples to
# values larger (smaller) than the self.threshold.
loss = torch.log(1 + torch.exp(torch.cat([
-g_pos + self.threshold,
g_neg - self.threshold]))).mean()
self.opt.zero_grad()
# this backward just compute the derivative and hence
# is not considered backpropagation.
loss.backward()
self.opt.step()
return self.forward(x_pos).detach(), self.forward(x_neg).detach()
if __name__ == "__main__":
torch.manual_seed(1234)
train_loader, test_loader = MNIST_loaders()
net = Net([784, 500, 500])
x, y = next(iter(train_loader))
x, y = x.cuda(), y.cuda()
x_pos = overlay_y_on_x(x, y)
rnd = torch.randperm(x.size(0))
x_neg = overlay_y_on_x(x, y[rnd])
net.train(x_pos, x_neg)
print('train error:', 1.0 - net.predict(x).eq(y).float().mean().item())
x_te, y_te = next(iter(test_loader))
x_te, y_te = x_te.cuda(), y_te.cuda()
print('test error:', 1.0 - net.predict(x_te).eq(y_te).float().mean().item())